scholarly journals Sperm cryopreservation impacts the early development of equine embryos by downregulating specific transcription factors

2021 ◽  
Author(s):  
Jose Manuel Ortiz-Rodriguez ◽  
Francisco Eduardo Martin-Cano ◽  
Gemma L Gaitskell-Phillips ◽  
Alberto Alvarez Barrientos ◽  
Heriberto Rodriguez-Martínez ◽  
...  

Equine embryos were obtained by insemination with either fresh or frozen-thawed spermatozoa at 8, 10 and 12 h post spontaneous ovulation, maintaining the pairs mare-stallion for the type of semen used. Next generation sequencing (NGS) was performed in all embryos and bioinformatic and enrichment analysis performed on the 21,058 identified transcripts. A total of 165 transcripts were downregulated in embryos obtained with cryopreserved spermatozoa respect embryos resulting from an insemination with fresh spermatozoa (p=0.021, q=0.1). The enrichment analysis using human orthologs using g:profiler on the downregulated transcripts marked an enrichment in transcription factors (TFs) in mRNAs downregulated in embryos obtained after insemination with cryopreserved spermatozoa. The 12 mRNAs (discriminant variables) most significantly downregulated in these embryos included among others, the chromatin-remodeling ATPase INO80, Lipase maturation factor 1 LMF1, the mitochondrial mRNA pseudouridine synthase RPUSD3, LIM and cysteine-rich domains protein 1, LMCD1. Sperm cryopreservation also caused a significant impact on the embryos at 8 to 10 days of development, but especially in the transition from 10 to 12 days. Overall, our findings provide strong evidence that insemination with cryopreserved spermatozoa poses a major impact in embryo development that may compromise its growth and viability, probably due to modifications in sperm proteins induced by cryopreservation. Identification of specific factors in the spermatozoa causing these changes may improve cryopreservation.

Author(s):  
Altuğ Koç ◽  
Elçin Bora ◽  
Tayfun Cinleti ◽  
Gizem Yıldız ◽  
Meral Torun Bayram ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andreas Papoutsis ◽  
Thomas Borody ◽  
Siba Dolai ◽  
Jordan Daniels ◽  
Skylar Steinberg ◽  
...  

Abstract Background SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment next-generation sequencing (NGS) from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. Results Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. Conclusion These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal–oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication. Trial registration ClinicalTrials.gov, NCT04359836, Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359836?term=NCT04359836&draw=2&rank=1).


2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document