scholarly journals Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load

2021 ◽  
Author(s):  
Lyle Muller

Sleep is generally considered to be a state of large-scale synchrony across thalamus and neocortex; however, recent work has challenged this idea by reporting isolated sleep rhythms such as slow-oscillations and spindles. What is the spatial scale of sleep rhythms? To answer this question, we adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves in high-noise settings for analysis of neural recordings in sleep. We then studied sleep spindles in non-human primate ECoG, human EEG, and clinical intracranial recordings (iEEG) in the human. We find a widespread extent of spindles, which has direct implications for the spatiotemporal dynamics we have previously studied in spindle oscillations (Muller et al., 2016) and the distribution of memory engrams in the primate.

2017 ◽  
Author(s):  
Yina Wei ◽  
Giri P Krishnan ◽  
Maxim Komarov ◽  
Maxim Bazhenov

AbstractSleep plays an important role in consolidation of recent memories. However, the mechanisms of consolidation remain poorly understood. In this study, using a realistic computational model of the thalamocortical network, we demonstrated that sleep spindles (the hallmark of N2 stage sleep) and slow oscillations (the hallmark of N3 stage sleep) both facilitate spike sequence replay as necessary for consolidation. When multiple memories were trained, the local nature of spike sequence replay during spindles allowed replay of the memories independently, while during slow oscillations replay of the weak memory was competing to the strong memory replay. This led to the weak memory extinction unless when sleep spindles (N2 sleep) preceded slow oscillations (N3 sleep), as observed during natural sleep. Our study presents a mechanistic explanation for the role of sleep rhythms in memory consolidation and proposes a testable hypothesis how the natural structure of sleep stages provides an optimal environment to consolidate memories.Significant StatementNumerous studies suggest importance of NREM sleep rhythms – spindles and slow oscillations - in sleep related memory consolidation. However, synaptic mechanisms behind the role of these rhythms in memory and learning are still unknown. Our new study predicts that sleep replay - the neuronal substrate of memory consolidation - is organized within the sleep spindles and coordinated by the Down to Up state transitions of the slow oscillation. For multiple competing memories, slow oscillations facilitated only strongest memory replay, while sleep spindles allowed a consolidation of the multiple competing memories independently. Our study predicts how the basic structure of the natural sleep stages provides an optimal environment for consolidation of multiple memories.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A20-A21
Author(s):  
Nikhilesh Natraj ◽  
Thomas Neylan ◽  
Leslie Yack ◽  
Daniel Mathalon ◽  
Anne Richards

Abstract Introduction The effect of increased cognitive load especially under duress has been known to affect brain rhythms in humans. However, this effect has been shown primarily in the awake brain; the effect of stressful cognitive load on sleep rhythms is yet unclear. We leveraged a unique opportunity to understand the effect of cognitive load under laboratory stress on sleep spindles and slow oscillations that are hallmark rhythms of NREM sleep. Methods Cortical 6-channel EEG nap data were collected from 45 subjects over two separate days: after a control session without laboratory stressors and after an experimental session in which they underwent fear condiitoning and negative-emotional-image viewing sessions. We detected sleep spindles (11-13Hz over frontal regions and 13-16Hz over centroposterior regions) and slow oscillations (0.16–1.25Hz oscillations) as discrete events at each of the six electrodes, and staged them by the sleep hypnogram. We evaluated the spindle rate in N2 sleep and the proportion of slow oscillations nested with a spindle in N3 sleep. Results Over all 6 EEG electrodes, N2 spindle rates increased on average by 14% in the experimental session compared to the control session (mixed-effect models p<0.001). In addition, over all 6 electrodes, the proportion of slow oscillations in N3 nested with a spindle increased by 2.3% in the experimental session compared to the control session (mixed effect model, p=0.005). Conclusion We show for the first time how increased cognitive load under stressful laboratory conditions affects sleep rhythms. Such an increased response in sleep might correspond to a continued emotional response due to the cognitive load under duress. Ongoing work seeks to tie these findings to possible emotional memory consolidation. Support (if any) VA Career Development Award to Dr. Richards (5IK2CX000871-05)


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


2017 ◽  
Vol 14 (9) ◽  
pp. 1513-1517 ◽  
Author(s):  
Rodrigo F. Berriel ◽  
Andre Teixeira Lopes ◽  
Alberto F. de Souza ◽  
Thiago Oliveira-Santos
Keyword(s):  

Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.


2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Sign in / Sign up

Export Citation Format

Share Document