scholarly journals Transcriptional states of retroelement-inserted regions and KRAB zinc finger protein association regulate DNA methylation of retroelements in human male germ cells

2021 ◽  
Author(s):  
Kei Fukuda ◽  
Yoshinori Makino ◽  
Satoru Kaneko ◽  
Yuki Okada ◽  
Kenji Ichiyanagi ◽  
...  

DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing is associated with male sterility. Although retroelement silencing mechanisms have been extensively studied in mouse germ cells, little progress has been made in humans. Here, we show that the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are associated with DNA methylation of retroelements in human primordial germ cells (hPGCs), and hominoid-specific retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA methylation during human spermatogenesis. Furthermore, we show that the degree of de novo DNA methylation in SVAs varies among human individuals, which confers a significant inter-individual epigenetic variation in sperm. Collectively, our results provide potential molecular mechanisms for the regulation of retroelements in human male germ cells.

1994 ◽  
Vol 13 (2) ◽  
pp. 157-165 ◽  
Author(s):  
R Hosseini ◽  
P Marsh ◽  
J Pizzey ◽  
L Leonard ◽  
S Ruddy ◽  
...  

ABSTRACT Zfp-37 is a zinc finger protein gene expressed in male germ cells. The cDNA detected two transcripts on Northern blots of testis RNA, with expression first detected at around day 19. To establish the pattern of expression of the protein we have raised antibodies to ZFP-37 and used them on thin sections of testis and on Western blots. On Western blots the antibody detected two proteins exclusively in testis extracts, confirming the previous mRNA expression data. A time-course study revealed that the larger of the two proteins appears at about day 22 but the smaller one is not detected until day 34. Analysis of the expression of these two proteins in purified germ cell preparations revealed that the smaller protein is only detectable in the elongating spermatids or residual bodies. Data from thin sections showed that most, but not all, of the protein recognized by the antibody is in the nucleus, a result further confirmed by Western blotting. These results are discussed in the light of the possible role of this protein in regulating spermatogenesis.


2020 ◽  
Vol 117 (49) ◽  
pp. 31290-31300 ◽  
Author(s):  
Tessa M. Bertozzi ◽  
Jessica L. Elmer ◽  
Todd S. Macfarlan ◽  
Anne C. Ferguson-Smith

Most transposable elements (TEs) in the mouse genome are heavily modified by DNA methylation and repressive histone modifications. However, a subset of TEs exhibit variable methylation levels in genetically identical individuals, and this is associated with epigenetically conferred phenotypic differences, environmental adaptability, and transgenerational epigenetic inheritance. The evolutionary origins and molecular mechanisms underlying interindividual epigenetic variability remain unknown. Using a repertoire of murine variably methylated intracisternal A-particle (VM-IAP) epialleles as a model, we demonstrate that variable DNA methylation states at TEs are highly susceptible to genetic background effects. Taking a classical genetics approach coupled with genome-wide analysis, we harness these effects and identify a cluster of KRAB zinc finger protein (KZFP) genes that modifies VM-IAPs intransin a sequence-specific manner. Deletion of the cluster results in decreased DNA methylation levels and altered histone modifications at the targeted VM-IAPs. In some cases, these effects are accompanied by dysregulation of neighboring genes. We find that VM-IAPs cluster together phylogenetically and that this is linked to differential KZFP binding, suggestive of an ongoing evolutionary arms race between TEs and this large family of epigenetic regulators. These findings indicate that KZFP divergence and concomitant evolution of DNA binding capabilities are mechanistically linked to methylation variability in mammals, with implications for phenotypic variation and putative paradigms of mammalian epigenetic inheritance.


Development ◽  
2021 ◽  
Vol 148 (10) ◽  
Author(s):  
Yuki Takada ◽  
Ruken Yaman-Deveci ◽  
Takayuki Shirakawa ◽  
Jafar Sharif ◽  
Shin-ichi Tomizawa ◽  
...  

ABSTRACT Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 – two essential proteins for maintenance DNA methylation – are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanako Kojima-Kita ◽  
Satomi Kuramochi-Miyagawa ◽  
Manabu Nakayama ◽  
Haruhiko Miyata ◽  
Steven E. Jacobsen ◽  
...  

AbstractThe PIWI (P-element-induced wimpy testis)-interacting-RNA (piRNA) pathway plays a crucial role in the repression of TE (transposable element) expression via de novo DNA methylation in mouse embryonic male germ cells. Various proteins, including MIWI2 are involved in the process. TE silencing is ensured by piRNA-guided MIWI2 that recruits some effector proteins of the DNA methylation machinery to TE regions. However, the molecular mechanism underlying the methylation is complex and has not been fully elucidated. Here, we identified MORC3 as a novel associating partner of MIWI2 and also a nuclear effector of retrotransposon silencing via piRNA-dependent de novo DNA methylation in embryonic testis. Moreover, we show that MORC3 is important for transcription of piRNA precursors and subsequently affects piRNA production. Thus, we provide the first mechanistic insights into the role of this effector protein in the first stage of piRNA biogenesis in embryonic TE silencing mechanism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanlu Liu ◽  
Javier Gallego-Bartolomé ◽  
Yuxing Zhou ◽  
Zhenhui Zhong ◽  
Ming Wang ◽  
...  

AbstractThe ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


Sign in / Sign up

Export Citation Format

Share Document