scholarly journals Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal coronaviruses

2021 ◽  
Author(s):  
Antoine Rebendenne ◽  
Priyanka Roy ◽  
Boris Bonaventure ◽  
Ana Luiza Chaves Valadão ◽  
Lowiese Desmarets ◽  
...  

Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.

2021 ◽  
Author(s):  
Caroline Goujon ◽  
Antoine Rebendenne ◽  
Priyanka Roy ◽  
Boris Bonaventure ◽  
Ana Chaves Valadao ◽  
...  

Abstract Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Li ◽  
Sara M. Clohisey ◽  
Bing Shao Chia ◽  
Bo Wang ◽  
Ang Cui ◽  
...  

AbstractHost dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza.


2021 ◽  
Author(s):  
Scott B. Biering ◽  
Sylvia A. Sarnik ◽  
Eleanor Wang ◽  
James R. Zengel ◽  
Varun Sathyan ◽  
...  

SUMMARYSARS-CoV-2 can cause a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of the host factors mediating viral infection or restriction is critical to elucidate SARS-CoV-2 host-pathogen interactions and the progression of COVID-19. To this end, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. These screens uncovered proviral and antiviral host factors across highly interconnected host pathways, including components implicated in clathrin transport, inflammatory signaling, cell cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high-molecular weight glycoproteins, as a prominent viral restriction network. We demonstrate that multiple membrane-anchored mucins are critical inhibitors of SARS-CoV-2 entry and are upregulated in response to viral infection. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and suggests interactions between SARS-CoV-2 and airway mucins of COVID-19 patients as a host defense mechanism.


2020 ◽  
Author(s):  
Mariana Ferrarini ◽  
Avantika Lal ◽  
Rita Rebollo ◽  
Andreas Gruber ◽  
Andrea Guarracino ◽  
...  

Abstract The novel betacoronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after initially emerging in Wuhan, China. Here we applied a novel, comprehensive bioinformatic strategy to public RNA sequencing and viral genome sequencing data, to better understand how SARS-CoV-2 interacts with human cells. To our knowledge, this is the first meta-analysis to predict host factors that play a specific role in SARS-CoV-2 pathogenesis, distinct from other respiratory viruses. We identified differentially expressed genes, isoforms and transposable element families specifically altered in SARS-CoV-2 infected cells. Well-known immunoregulators including CSF2, IL-32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were overexpressed. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as hnRNPA1, PABPC1 and eIF4b, which may play important roles in the viral life cycle. We also detected four viral sequence variants in the spike, polymerase, and nonstructural proteins that correlate with severity of COVID-19. The host factors we identified likely represent important mechanisms in the disease profile of this pathogen, and could be targeted by prophylactics and/or therapeutics against SARS-CoV-2.


2021 ◽  
Author(s):  
Daniel Poston ◽  
Yiska Weisblum ◽  
Alvaro Hobbs ◽  
Paul D Bieniasz

Emerging zoonotic viral pathogens threaten global health and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic and pandemic threat coronaviruses as well as ebolavirus. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. VPS29 deficiency caused changes endosome morphology, and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence viral susceptibility and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jie Ma ◽  
Chuanxi Chen ◽  
Andreas S. Barth ◽  
Chris Cheadle ◽  
Xiangdong Guan ◽  
...  

Background. Sepsis is a leading cause of mortality in intensive care units worldwide. A better understanding of the blood systems response to sepsis should expedite the identification of biomarkers for early diagnosis and therapeutic interventions.Methods. We analyzed microarray studies whose data is available from the GEO repository and which were performed on the whole blood of septic patients and normal controls.Results. We identified 6 cohorts consisting of 450 individuals (sepsis = 323, control = 127) providing genome-wide messenger RNA (mRNA) expression data. Through meta-analysis we found the “Lysosome” and “Cytoskeleton” pathways were upregulated in human sepsis patients relative to controls, in addition to previously known signaling pathways (including MAPK, TLR). The key regulatory genes in the “Lysosome” pathway include lysosomal acid hydrolases (e.g., protease cathepsin A, D) as well as the major (LAMP1, 2) and minor (SORT1, LAPTM4B) membrane proteins. In contrast, pathways related to “Ribosome”, “Spliceosome” and “Cell adhesion molecules” were found to be downregulated, along with known pathways for immune dysfunction. Overall, our study revealed distinct mRNA activation profiles and protein-protein interaction networks in blood of human sepsis.Conclusions. Our findings suggest that aberrant mRNA expression in the lysosome and cytoskeleton pathways may play a pivotal role in the molecular pathobiology of human sepsis.


2020 ◽  
Author(s):  
Mariana G. Ferrarini ◽  
Avantika Lal ◽  
Rita Rebollo ◽  
Andreas Gruber ◽  
Andrea Guarracino ◽  
...  

AbstractThe novel betacoronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after initially emerging in Wuhan, China. Here we applied a novel, comprehensive bioinformatic strategy to public RNA sequencing and viral genome sequencing data, to better understand how SARS-CoV-2 interacts with human cells. To our knowledge, this is the first meta-analysis to predict host factors that play a specific role in SARS-CoV-2 pathogenesis, distinct from other respiratory viruses. We identified differentially expressed genes, isoforms and transposable element families specifically altered in SARS-CoV-2 infected cells. Well-known immunoregulators including CSF2, IL-32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were overexpressed. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as hnRNPA1, PABPC1 and eIF4b, which may play important roles in the viral life cycle. We also detected four viral sequence variants in the spike, polymerase, and nonstructural proteins that correlate with severity of COVID-19. The host factors we identified likely represent important mechanisms in the disease profile of this pathogen, and could be targeted by prophylactics and/or therapeutics against SARS-CoV-2.Graphical Abstract


Author(s):  
Ruofan Wang ◽  
Camille R. Simoneau ◽  
Jessie Kulsuptrakul ◽  
Mehdi Bouhaddou ◽  
Katherine Travisano ◽  
...  

AbstractThe Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.


Sign in / Sign up

Export Citation Format

Share Document