scholarly journals Challenges of γ9δ2TCR affinity maturation when using phage display

2021 ◽  
Author(s):  
Lovro Kramer ◽  
Margot Demuysere ◽  
Eline van Diest ◽  
Dennis Beringer ◽  
Jurgen Kuball

Background: Over the past years we showed that the efficacy of αβT cells engineered to express a defined γδTCR (TEG) depends on the functional avidity of the γ9δ2TCR. We hypothesized that functional avidity mediated through γ9δ2TCR in the TEG format could be further enhanced by increasing affinity of the γ9δ2TCR. Methods: We attempted to overcome limited affinity of natural occurring γ9δ2TCRs through affinity maturation by phage display using a library containing mutations in CDR1 and CDR2 of both TCR chains. Conclusion: Affinity maturation of γ9δ2TCR by using phage display was not successful. The largest hurdle was the periplasmic expression of γ9δ2TCR constructs in E.coli which is a prerequisite for successful phage display. The underlying reason for this lack of expression was the instability of the single chain (sc)TCR format. Expression of scTCR formats in HEK293F cells yielded only 15-20% correctly folded scTCR.

1998 ◽  
Vol 64 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Jörg F. Rippmann ◽  
Michaela Klein ◽  
Christian Hoischen ◽  
Bodo Brocks ◽  
Wolfgang J. Rettig ◽  
...  

ABSTRACT Recently it has been demonstrated that L-form cells ofProteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coliJM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.


1994 ◽  
Vol 269 (13) ◽  
pp. 9533-9538
Author(s):  
S.J. Deng ◽  
C.R. MacKenzie ◽  
J. Sadowska ◽  
J. Michniewicz ◽  
N.M. Young ◽  
...  

2009 ◽  
pp. NA-NA ◽  
Author(s):  
Deniz Gur ◽  
Suling Liu ◽  
Anurag Shukla ◽  
Stephanie C Pero ◽  
Max S Wicha ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koichiro Saka ◽  
Taro Kakuzaki ◽  
Shoichi Metsugi ◽  
Daiki Kashiwagi ◽  
Kenji Yoshida ◽  
...  

AbstractMolecular evolution is an important step in the development of therapeutic antibodies. However, the current method of affinity maturation is overly costly and labor-intensive because of the repetitive mutation experiments needed to adequately explore sequence space. Here, we employed a long short term memory network (LSTM)—a widely used deep generative model—based sequence generation and prioritization procedure to efficiently discover antibody sequences with higher affinity. We applied our method to the affinity maturation of antibodies against kynurenine, which is a metabolite related to the niacin synthesis pathway. Kynurenine binding sequences were enriched through phage display panning using a kynurenine-binding oriented human synthetic Fab library. We defined binding antibodies using a sequence repertoire from the NGS data to train the LSTM model. We confirmed that likelihood of generated sequences from a trained LSTM correlated well with binding affinity. The affinity of generated sequences are over 1800-fold higher than that of the parental clone. Moreover, compared to frequency based screening using the same dataset, our machine learning approach generated sequences with greater affinity.


2006 ◽  
Vol 11 (5) ◽  
pp. 546-552 ◽  
Author(s):  
Jingyan Wei ◽  
Yang Liu ◽  
Songchuan Yang ◽  
Junjie Xu ◽  
Hangtian Kong ◽  
...  

A novel gene, testes-specific protease 50 ( TSP50), is abnormally activated and differentially expressed in most patients with breast cancer, suggesting it as a novel biomarker for this disease. The possibility that TSP50 may be an oncogene is presently under investigation. In this study, the single-chain variable fragments (scFvs) against TSP50 were panned from a phage display antibody library using TSP50-specific peptide, pep-50, as a target antigen. After 4 rounds of panning, 3 clones (A1, A11, and C8) from the library were verified to show strong binding affinities for TSP50 by enzyme-linked immunosorbent assay (ELISA) and to contain the variable region genes of the light and heavy chains of scFv antibodies but different complementary determining regions by sequencing. The genes of scFv-A1 and scFv-A11 were cloned into expression vector pPELB and successfully expressed as a soluble protein in Escherichia coli Rosetta. The yields of expressions were about 4.0 to 5.0 mg of protein from 1 L of culture. The expressed proteins were purified by a 2-step procedure consisting of ion-exchange chromatography, followed by immobilized metal affinity chromatography. The purified proteins were shown a single band at the position of 31 KDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Sandwich ELISA demonstrated that the expressed scFv proteins were able to specifically react with pep-50, laying a foundation for the investigation of the function of TSP50 in the development and treatment of breast cancer.


Elements ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Zackary Tajin Park

A phage display library was previously constructed from an SIV-infected rhesus macaque. Several single chain Fv (scFv), including SU24, SU343 and LL25X, were selected using phage display technology. Sequences corresponding to SU24, SU343 and LL25X were optimized for expression in a mammalian system and commercially synthesized. SU24 and SU343 had previously been cloned into a mammalian expression vector. In this study, we aimed to characterize the specificity of SU24, SU343, and LL25X.. The codon-optimized version of the scFv LL25X gene sequence was cloned into a mammalian expression vector (pCEP4).  LL25X DNA was amplified by PCR, and the PCR product and mammalian expression vector were both digested with KpnI/SapI restriction enzymes. Digested fragments were purified, and the fragments were ligated using T4DNA ligase. E. coli cells were transformed with the ligation reaction. Single colonies were selected on LB agar plates containing the selective antibiotic (ampicillin). Positive colonies were identified after DNA mini-preparation and test-digestion with KpnI and SapI. Sanger sequencing confirmed cloning results and DNA sequence accuracy. Following transfection of mammalian cells (293T), LL25X-Fc cells, and purifying our protein, the binding of LL25X-Fc to the SIV gp140 envelope protein was confirmed via ELISA and Western Blotting.


2017 ◽  
Vol 38 (6) ◽  
pp. 3915
Author(s):  
Greice Japolla ◽  
Ana Flávia Batista Penido ◽  
Greyciele Rodrigues Almeida ◽  
Luiz Artur Mendes Bataus ◽  
Jair Pereira Cunha Junior ◽  
...  

The specificity of monoclonal antibodies (mAbs) to desired targets makes these molecules suitable for therapeutic and diagnostic uses against a wide range of pathogens. Phage display antibody libraries offer one method by which mAbs can be selected for, without the use of conventional hybridoma technology. In this work, phage display technology was used to construct, select and characterize a combinatorial single chain fragment variable (scFv) antibody library against bovine herpesvirus type 1 (BoHV-1) from the immune repertoire of chickens immunized with the virus. In silico analysis of the hypervariable domains of the antibody heavy chains revealed a high frequency of scFv fragments with low variability, suggesting that selection had probably been carried out and favored by a few im-munogenic viral antigens. The reactivity of the scFv fragments selected against BoHV-1 was demon-strated by Phage-ELISA. A significant increase in antibody reactivity to the target was observed after six rounds of library selection, showing its potential use as a molecule for BoHV-1 diagnosis. The strategy described here opens up a field for the use of phage display as a tool for selection of mono-clonal antibodies that could be used for theranostic applications against infectious and parasitic dis-eases of veterinary interest.


2019 ◽  
Vol 6 (3) ◽  
pp. e561 ◽  
Author(s):  
Wenli Zhu ◽  
Zhen Wang ◽  
Suying Hu ◽  
Ye Gong ◽  
Yuanchu Liu ◽  
...  

ObjectiveUsing phage display, we sought to screen single-chain variable fragments (scFvs) against complement C5 to treat neuromyelitis optica spectrum disorder (NMOSD).MethodsAfter 5 rounds of phage display, we isolated individual clones and identified phage clones specifically binding to C5 using ELISA. Using aquaporin-4 (AQP4)-transfected cells in vitro, we confirmed whether these scFvs prevented complement-dependent cytotoxicity (CDC) caused by the serum of patients with NMOSD and human complement (hC). We selected an NMOSD mouse model, in which intracerebral NMOSD immunoglobulin G (IgG) and hC injections induce NMOSD-like lesions in vivo.ResultsWe obtained scFvs to test specificity and blocking efficiency. The scFv C5B3 neutralized C5 in the complement activation pathway, which prevented AQP4-IgG–mediated CDC in AQP4-transfected cells. In an NMOSD mouse model, C5B3 prevented AQP4 and astrocyte loss, decreased demyelination, and reduced inflammatory infiltration and membrane attack complex formation in lesions.ConclusionsWe used phage display to screen C5B3 against C5, which was effective in inhibiting cytotoxicity in vitro and preventing CNS pathology in vivo.


Sign in / Sign up

Export Citation Format

Share Document