scholarly journals Redundant and specific roles of EGFR ligands in the ERK activation waves during collective cell migration of MDCK cells

2021 ◽  
Author(s):  
Shuhao Lin ◽  
Daiki Hirayama ◽  
Gembu Maryu ◽  
Kimiya Matsuda ◽  
Naoya Hino ◽  
...  

Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves by gene knockout. Four of the seven known EGFR ligands are expressed in MDCK cells. We found that epidermal growth factor (EGF)-deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Therefore, we knocked out the EGFR ligand genes in decreasing order of expression. ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked-out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout Nrg1, a ligand for ErbB3 and ErbB4, and found that Nrg1 deficiency induced growth arrest in the absence of all four EGFR ligand genes expressed in MDCK cells. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.

2021 ◽  
Vol 5 (1) ◽  
pp. e202101206
Author(s):  
Shuhao Lin ◽  
Daiki Hirayama ◽  
Gembu Maryu ◽  
Kimiya Matsuda ◽  
Naoya Hino ◽  
...  

Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)–deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.


2007 ◽  
Vol 18 (1) ◽  
pp. 176-188 ◽  
Author(s):  
Keisuke Horiuchi ◽  
Sylvain Le Gall ◽  
Marc Schulte ◽  
Takafumi Yamaguchi ◽  
Karina Reiss ◽  
...  

Signaling via the epidermal growth factor receptor (EGFR), which has critical roles in development and diseases such as cancer, is regulated by proteolytic shedding of its membrane-tethered ligands. Sheddases for EGFR-ligands are therefore key signaling switches in the EGFR pathway. Here, we determined which ADAMs (a disintegrin and metalloprotease) can shed various EGFR-ligands, and we analyzed the regulation of EGFR-ligand shedding by two commonly used stimuli, phorbol esters and calcium influx. Phorbol esters predominantly activate ADAM17, thereby triggering a burst of shedding of EGFR-ligands from a late secretory pathway compartment. Calcium influx stimulates ADAM10, requiring its cytoplasmic domain. However, calcium influx-stimulated shedding of transforming growth factor α and amphiregulin does not require ADAM17, even though ADAM17 is essential for phorbol ester-stimulated shedding of these EGFR-ligands. This study provides new insight into the machinery responsible for EGFR-ligand release and thus EGFR signaling and demonstrates that dysregulated EGFR-ligand shedding may be caused by increased expression of constitutively active sheddases or activation of different sheddases by distinct stimuli.


Sign in / Sign up

Export Citation Format

Share Document