scholarly journals Distinct cellular immune signatures in acute Zika virus infection are associated with high or low persisting neutralizing antibody titers

2021 ◽  
Author(s):  
Elizabeth E. McCarthy ◽  
Pamela M. Odorizzi ◽  
Emma Lutz ◽  
Carolyn P. Smullin ◽  
Iliana Tenvooren ◽  
...  

Although the formation of a durable neutralizing antibody response after an acute viral infection is a key component of protective immunity, little is known about why some individuals generate high versus low neutralizing antibody titers to infection or vaccination. Infection with Zika virus (ZIKV) during pregnancy can cause devastating fetal outcomes, and efforts to understand natural immunity to this infection are essential for optimizing vaccine design. In this study, we leveraged the high-dimensional single-cell profiling capacity of mass cytometry (CyTOF) to deeply characterize the cellular immune response to acute and convalescent ZIKV infection in a cohort of blood donors in Puerto Rico incidentally found to be viremic during the 2015-2016 epidemic in the Americas. During acute ZIKV infection, we identified widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated innate immune subsets, as well as activated follicular helper CD4+ T cells and proliferating CD27-IgD- B cells, during acute infection were associated with high titers of ZIKV neutralizing antibodies at 6 months post-infection. On the other hand, low titers of ZIKV neutralizing antibodies were associated with immune features that suggested a cytotoxic-skewed immune "set-point." Our study offers insight into the cellular coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials for ZIKV and other acute viral infections aimed at inducing high titers of neutralizing antibodies.

2018 ◽  
Author(s):  
Blake Schouest ◽  
Marissa Fahlberg ◽  
Elizabeth A. Scheef ◽  
Matthew J. Ward ◽  
Kyra Headrick ◽  
...  

AbstractCD8+ lymphocytes are critically important in the control of viral infections, but their roles in acute Zika virus (ZIKV) infection remain incompletely explored in a model sufficiently similar to humans immunologically. Here, we use CD8+ lymphocyte depletion to dissect acute immune responses in adult male rhesus and cynomolgus macaques infected with ZIKV. CD8 depletion delayed serum viremia and dysregulated patterns of innate immune cell homing and monocyte-driven transcriptional responses in the blood. CD8-depleted macaques also showed evidence of compensatory adaptive immune responses, with elevated Th1 activity and persistence of neutralizing antibodies beyond the clearance of serum viremia. The absence of CD8+ lymphocytes increased viral burdens in lymphatic tissues, semen, and cerebrospinal fluid, and neural lesions were also evident in both CD8-depleted rhesus macaques. Together, these data support a role for CD8+ lymphocytes in the control of ZIKV dissemination and in maintaining immune regulation during acute infection of nonhuman primates.


2021 ◽  
Author(s):  
Margherita Rosati ◽  
Mahesh Agarwal ◽  
Xintao Hu ◽  
Santhi Devasundaram ◽  
Dimitris Stellas ◽  
...  

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


2019 ◽  
Author(s):  
Nicholas J Maness ◽  
Blake Schouest ◽  
Anil Singapuri ◽  
Maria Dennis ◽  
Margaret H. Gilbert ◽  
...  

AbstractZika virus (ZIKV) will remain a public health threat until effective vaccines and therapeutics are made available in the hardest hit areas of the world. Recent data in a nonhuman primate model showed that infants postnatally infected with ZIKV were acutely susceptible to high viremia and neurological damage, suggesting the window of vulnerability extends beyond gestation. We addressed the susceptibility of two infant rhesus macaques born healthy to dams infected with Zika virus during pregnancy. Passively acquired neutralizing antibody titers dropped below detection limits between 2 and 3 months of age, while binding, possibly non-neutralizing antibodies remained detectable until viral infection at 5 months of age. Post-infection acute serum viremia was substantially reduced relative to adults infected with the same dose of the same stock of a Brazilian isolate of ZIKV (n=11 pregnant females) and another stock of the same isolate (n=4 males and 4 non-pregnant females). Virus was never detected in cerebrospinal fluid nor in neural tissues at necropsy two weeks after infection, suggesting reduced viral burden relative to adults and published data from infants. However, viral RNA was detected in lymph nodes, confirming some tissue dissemination. Though protection was not absolute, our data suggest infants born healthy to infected mothers may harbor a modest but important level of protection from postnatally acquired ZIKV for several months after birth, an encouraging result given the potentially severe infection outcomes of this population.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaojuan Xue ◽  
Zhaorong Yu ◽  
Hongyan Jin ◽  
Lin Liang ◽  
Jiayang Li ◽  
...  

Abstract Background Vesicular stomatitis (VS) is an acute, highly contagious and economically important zoonotic disease caused by the vesicular stomatitis virus (VSV). There is a need for effective and safe stable recombinant vaccine for the control of the disease. The human type 5 replication-defective adenovirus expression vector is a good way to construct recombinant vaccines. Results Three recombinant adenoviruses (rAd) were successfully constructed that expressed the VSV Indiana serotype glycoprotein (VSV-IN-G), VSV New Jersey serotype glycoprotein (VSV-NJ-G), and the G fusion protein (both serotypes of G [VSV-IN-G-NJ-G]) with potentiality to induce protective immunity. G proteins were successfully expressed with good immunogenicity. The rAds could induce the production of VSV antibodies in mice, and VSV neutralizing antibodies in goats, respectively. The neutralizing antibody titers could reach 1:32 in mice and 1:64 in goats. The rAds induced strong lymphocyte proliferation in mice and goats, which was significantly higher compared to the negative control groups. Conclusions The three rAds constructed in the study expressed VSV-G proteins and induced both humoral and cellular immune responses in mice and goats. These results lay the foundation for further studies on the use of rAds in vaccines expressing VSV-G.


2021 ◽  
Author(s):  
Jeroen Pollet ◽  
Ulrich Strych ◽  
Wen-Hsiang Chen ◽  
Leroy Versteeg ◽  
Brian Keegan ◽  
...  

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD219-N1C1 subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This vaccine formulation is similar to one that entered advanced phase 3 clinical development in India. We compared the immune response of mice vaccinated with RBD219-N1C1/alum to mice vaccinated with RBD219-N1C1/alum+CpG. We also evaluated mice immunized with RBD219-N1C1/alum+CpG and boosted with RBD219-N1C1/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the RBD219-N1C1/alum formulation, the RBD219-N1C1/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.1 (Kappa) variants. Notably, the sera from mice that received two 7 μg doses of RBD219-N1C1/alum+CpG showed more than 18 times higher neutralizing antibody titers against B.1.351, than the WHO International Standard for anti-SARS-CoV-2 immunoglobulin NIBSC 20/136. Interestingly, a booster dose did not require the addition of CpG to induce this effect. The data reported here reinforces that the RBD219-N1C1/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including three variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa).


2019 ◽  
Author(s):  
Melissa D. Mattocks ◽  
Kenneth S. Plante ◽  
Ethan J. Fritch ◽  
Ralph S. Baric ◽  
Martin T. Ferris ◽  
...  

AbstractThe 2015-2016 emergence of Zika virus (ZIKV) in the Americas, and recognition that ZIKV infection during pregnancy can result in birth defects, revealed a need for small animal models to study ZIKV pathogenic mechanisms and evaluate candidate vaccines and antivirals. Mice would be an attractive system for such studies, but ZIKV replicates poorly in laboratory mice because it fails to antagonize murine STAT2 and STING. To address this, most ZIKV pathogenesis studies have used mice with impaired interferon signaling (e.g. Ifnar1−/− or treatment with IFNAR1-blocking antibodies). However, using mice with severe defects in innate antiviral signaling confounds studies of viral pathogenic mechanisms. Collaborative Cross (CC) mice have proven to be a valuable system for developing new mouse pathogenesis models for viral infections that are not well modeled in conventional laboratory mouse lines. To test whether CC mice could provide an immune-competent model for ZIKV pathogenesis, we infected CC lines with ZIKV and assessed weight loss, viremia, and production of neutralizing antibodies. We tested 21 CC lines (CC001, CC002, CC003, CC004, CC005, CC006, CC011, CC012, CC013, CC019, CC024, CC028, CC040, CC041, CC042, CC046, CC051, CC059, CC061, CC068, and CC072, 13 of which have non-functional alleles of the flavivirus restriction factor Oas1b) and 3 ZIKV strains (MR766, H/PF/2013, and a mouse-adapted variant of Dakar 41525). ZIKV infection did not induce weight loss compared to mock-infected controls and accordingly only low levels of viral RNA were detected in serum. Only a subset of mice developed neutralizing antibodies to ZIKV, likely due to overall low levels of infection and viremia. Our results are consistent with other studies demonstrating poor ZIKV infection in interferon-intact mice and suggest that the tested CC lines do not include polymorphic host genes that greatly increase susceptibility to ZIKV infection.


2021 ◽  
Author(s):  
Tomohiro Takano ◽  
Miwa Morikawa ◽  
Yu Adachi ◽  
Kiyomi Kabasawa ◽  
Nicolas Sax ◽  
...  

Abstract Pfizer/BioNTec BNT162b2 mRNA vaccine robustly elicits neutralizing antibodies against SARS-CoV-2 in clinical trials and real-world settings. However, booster vaccinations are frequently associated with self-limited adverse events. Here, by applying a high-dimensional immune profiling approach to peripheral blood, we linked early vaccine-induced immune dynamics with adverse events and neutralizing antibody responses. The dynamics of two dendritic cell subsets (DC3s and AS-DCs) were identified as the specific correlates for adverse events; the combination of these cell dynamics stratified the vaccinees with severe reactogenicity, while the stratification did not affect the neutralizing antibody titers. Furthermore, the NKT-like cell dynamics that correlated with adverse events and antibody titers were accounted for distinct magnitudes of both events by sex and age. The identified immune correlates for adverse events and antibody responses may pave the way for a rational vaccine strategy for reducing the reactogenicity of mRNA vaccines without compromising the immunogenicity.


2020 ◽  
Author(s):  
Co Thach Nguyen ◽  
Meng Ling Moi ◽  
Thi Quynh Mai Le ◽  
Thi Thu Thuy Nguyen ◽  
Thi Bich Hau Vu ◽  
...  

Abstract Background : Between 2016 and 2019, 265 cases of Zika virus (ZIKV) infection were reported in Vietnam, predominantly in southern Vietnam. In 2016, a case of ZIKV-associated microcephaly was confirmed in the Central Highlands, and several members of the infant’s family were confirmed to be infected with ZIKV. The study aims to determine the level of immunity to ZIKV in the general population of the ZIKV epidemic region. Methods: A total of 879 serum samples were collected from 801 participants between January 2017 and July 2018, during and after the ZIKV epidemic in Vietnam. The samples were tested for anti-ZIKV immunoglobulin M (IgM) and immunoglobulin G (IgG), and anti-dengue virus (DENV) IgG antibodies using enzyme-linked immunosorbent assays (ELISA). Plaque-reduction neutralization test (PRNT) for ZIKV was performed on all samples, and for DENV on the samples that ZIKV neutralizing antibody positive. Results: A total of 83 (10.3%) participants had anti-ZIKV IgM. Of the 83, 6 were confirmed to be ZIKV antibodies positive using PRNT and anti-ZIKV IgG ELISA. Of the 718 participants who were anti-ZIKV IgM negative, a further 3 cases were confirmed as positive for antibodies against ZIKV. Of the 9 participants with ZIKV infection, 5 lived in the same village as the infant with ZIKV-associated microcephaly and the other 4 lived in 2 neighboring communes. Repeat samples were collected from the 83 ZIKV IgM positive participants 1.5 years after the first collection. No new cases of ZIKV infection were detected. In addition, 2 of 3 participants with anti-ZIKV NS1 IgG demonstrated a 4- to 8-fold increase in ZIKV neutralizing antibody titer. Conclusions: ZIKV was present in the area around Krong Buk, with the rate of ZIKV-specific antibodies was 1.1% in the community since at least 2016. While the low levels of circulation together with low seroprevalence suggests a limited outbreak in the region, the results also reflect on low levels of protective immunity to Zika within the population. These results provide a better understanding of the current ZIKV epidemic status in the region and demonstrate a need for implementation of more effective ZIKV infection control measures.


2021 ◽  
Author(s):  
Xiaojuan Xue ◽  
Zhaorong Yu ◽  
Hongyan Jin ◽  
Lin Liang ◽  
Jiayang Li ◽  
...  

Abstract Background: Vesicular stomatitis (VS) is an acute, highly contagious and economically important zoonotic disease caused by the vesicular stomatitis virus (VSV). There is a need for effective and safe stable recombinant vaccine for the control of the disease. The human type 5 replication-defective adenovirus expression vector is a good way to construct recombinant vaccines.Results: Three recombinant adenoviruses (rAd) were successfully constructed that expressed the VSV Indiana serotype glycoprotein (VSV-IN-G), VSV New Jersey serotype glycoprotein (VSV-NJ-G), and the G fusion protein (both serotypes of G [VSV-IN-G-NJ-G]) with potentiality to induce protective immunity. G proteins were successfully expressed with good immunogenicity. The rAds could induce the production of VSV antibodies in mice, and VSV neutralizing antibodies in goats, respectively. The neutralizing antibody titers could reach 1:32 in mice and 1:64 in goats. The rAds induced strong lymphocyte proliferation in mice and goats, which was significantly higher compared to the negative control groups. Conclusions: The three rAds constructed in the study expressed VSV-G proteins and induced both humoral and cellular immune responses in mice and goats. These results lay the foundation for further studies on the use of rAds in vaccines expressing VSV-G.


2020 ◽  
Author(s):  
Co Thach Nguyen ◽  
Meng Ling Moi ◽  
Thi Quynh Mai Le ◽  
Thi Thu Thuy Nguyen ◽  
Thi Bich Hau Vu ◽  
...  

Abstract Background : Between 2016 and 2019, 265 cases of Zika virus (ZIKV) infection were reported in Vietnam, predominantly in southern Vietnam. In 2016, a case of ZIKV-associated microcephaly was confirmed in the Central Highlands, and several members of the infant’s family were confirmed to be infected with ZIKV. The study aims to determine the level of immunity to ZIKV in the general population of the ZIKV epidemic region. Methods: A total of 879 serum samples were collected from 801 participants between January 2017 and July 2018, during and after the ZIKV epidemic in Vietnam. The samples were tested for anti-ZIKV immunoglobulin M (IgM) and immunoglobulin G (IgG), and anti-dengue virus (DENV) IgG antibodies using enzyme-linked immunosorbent assays (ELISA). Plaque-reduction neutralization test (PRNT) for ZIKV was performed on all samples, and for DENV on the samples that ZIKV neutralizing antibody positive. Results: A total of 83 (10.3%) participants had anti-ZIKV IgM. Of the 83, 6 were confirmed to be ZIKV antibodies positive using PRNT and anti-ZIKV IgG ELISA. Of the 718 participants who were anti-ZIKV IgM negative, a further 3 cases were confirmed as positive for antibodies against ZIKV. Of the 9 participants with ZIKV infection, 5 lived in the same village as the infant with ZIKV-associated microcephaly and the other 4 lived in 2 neighboring communes. Repeat samples were collected from the 83 ZIKV IgM positive participants 1.5 years after the first collection. No new cases of ZIKV infection were detected. In addition, 2 of 3 participants with anti-ZIKV NS1 IgG demonstrated a 4- to 8-fold increase in ZIKV neutralizing antibody titer. Conclusions: ZIKV was present in the area around Krong Buk, with the rate of ZIKV-specific antibodies was 1.1% in the community since at least 2016. While the low levels of circulation together with low seroprevalence suggests a limited outbreak in the region, the results also reflect on low levels of protective immunity to Zika within the population. These results provide a better understanding of the current ZIKV epidemic status in the region and demonstrate a need for implementation of more effective ZIKV infection control measures.


Sign in / Sign up

Export Citation Format

Share Document