scholarly journals RNA Binding Properties of Bunyamwera Virus Nucleocapsid Protein and Selective Binding to an Element in the 5′ Terminus of the Negative-Sense S Segment

2000 ◽  
Vol 74 (21) ◽  
pp. 9946-9952 ◽  
Author(s):  
Jane C. Osborne ◽  
Richard M. Elliott

ABSTRACT The genome of Bunyamwera virus (BUN) (familyBunyaviridae, genus Bunyavirus) comprises three negative-sense RNA segments which act as transcriptional templates for the viral polymerase only when encapsidated by the nucleocapsid protein (N). Previous studies have suggested that the encapsidation signal may reside within the 5′ terminus of each segment. The BUN N protein was expressed as a 6-histidine-tagged fusion protein in Escherichia coli and purified by metal chelate chromatography. An RNA probe containing the 5′-terminal 32 and 3′-terminal 33 bases of the BUN S (small) genome segment was used to investigate binding by the N protein in vitro using gel mobility shift and filter binding assays. On acrylamide gels a number of discrete RNA-N complexes were resolved, and analysis of filter binding data indicated a degree of cooperativity in N protein binding. RNA-N complexes were resistant to digestion with up to 1 μg of RNase A per ml. Competition assays with a variety of viral and nonviral RNAs identified a region within the 5′ terminus of the BUN S segment for which N had a high preference for binding. This site may constitute the signal for initiation of encapsidation by N.

2004 ◽  
Vol 78 (15) ◽  
pp. 8281-8288 ◽  
Author(s):  
M. A. Mir ◽  
A. T. Panganiban

ABSTRACT Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3′ and 5′ ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.


2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Sawsan Napthine ◽  
Chris H. Hill ◽  
Holly C. M. Nugent ◽  
Ian Brierley

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009931
Author(s):  
Jorge Vera-Otarola ◽  
Estefania Castillo-Vargas ◽  
Jenniffer Angulo ◽  
Francisco M. Barriga ◽  
Eduard Batlle ◽  
...  

The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins.


2019 ◽  
Vol 295 (3) ◽  
pp. 883-895 ◽  
Author(s):  
Yunrong Gao ◽  
Dongdong Cao ◽  
Hyunjun Max Ahn ◽  
Anshuman Swain ◽  
Shaylan Hill ◽  
...  

The templates for transcription and replication by respiratory syncytial virus (RSV) polymerase are helical nucleocapsids (NCs), formed by viral RNAs that are encapsidated by the nucleoprotein (N). Proper NC assembly is vital for RSV polymerase to engage the RNA template for RNA synthesis. Previous studies of NCs or nucleocapsid-like particles (NCLPs) from RSV and other nonsegmented negative-sense RNA viruses have provided insights into the overall NC architecture. However, in these studies, the RNAs were either random cellular RNAs or average viral genomic RNAs. An in-depth mechanistic understanding of NCs has been hampered by lack of an in vitro assay that can track NC or NCLP assembly. Here we established a protocol to obtain RNA-free N protein (N0) and successfully demonstrated the utility of a new assay for tracking assembly of N with RNA oligonucleotides into NCLPs. We discovered that the efficiency of the NCLP (N–RNA) assembly depends on the length and sequence of the RNA incorporated into NCLPs. This work provides a framework to generate purified N0 and incorporate it with RNA into NCLPs in a controllable manner. We anticipate that our assay for in vitro trackable assembly of RSV-specific nucleocapsids may enable in-depth mechanistic analyses of this process.


2005 ◽  
Vol 79 (15) ◽  
pp. 10032-10039 ◽  
Author(s):  
William Severson ◽  
Xiaolin Xu ◽  
Michaela Kuhn ◽  
Nina Senutovitch ◽  
Mercy Thokala ◽  
...  

ABSTRACT The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding.


2001 ◽  
Vol 75 (24) ◽  
pp. 12188-12197 ◽  
Author(s):  
Tara L. Cartee ◽  
Gail W. Wertz

ABSTRACT The M2-1 protein of respiratory syncytial (RS) virus is a transcriptional processivity and antitermination factor. The M2-1 protein has a Cys3His1 zinc binding motif which is essential for function, is phosphorylated, and has been shown to interact with the RS virus nucleocapsid (N) protein. In the work reported here, we determined the sites at which the M2-1 protein was phosphorylated and investigated the importance of these phosphorylated residues for M2-1 function in transcription. By combining protease digestion, matrix-assisted laser desorption ionization–time of flight mass spectrometry, and site-directed mutagenesis, we identified the phosphorylated residues as serines 58 and 61, not threonine 56 and serine 58 as previously reported. Serines 58 and 61 and the surrounding amino acids are in a consensus sequence for phosphorylation by casein kinase I. Consistent with this, we showed that the unphosphorylated M2-1 protein synthesized in Escherichia coli could be phosphorylated in vitro by casein kinase I. The effect of eliminating phosphorylation by site-specific mutagenesis of serines 58 and 61 on the function of the M2-1 protein in transcription of RS virus subgenomic replicons was assayed. The activities of the M2-1 protein phosphorylation mutants in transcriptional antitermination were tested over a range of concentrations and were found to be substantially inhibited at all concentrations. The data show that phosphorylation is important for the M2-1 protein function in transcription. However, mutation of the M2-1 phosphorylation sites did not interfere with the ability of the M2-1 protein to interact with the N protein in transfected cells. The interaction of the M2-1 and N proteins in cotransfected cells was found to be sensitive to RNase A, indicating that the M2-1–N protein interaction was mediated via RNA. Furthermore, the M2-1 protein was shown to bind monocistronic and polycistronic RS virus mRNAs during infection.


2000 ◽  
Vol 20 (6) ◽  
pp. 2209-2217 ◽  
Author(s):  
Jacqueline M. T. Klein Gunnewiek ◽  
Reem I. Hussein ◽  
Yvonne van Aarssen ◽  
Daphne Palacios ◽  
Rob de Jong ◽  
...  

ABSTRACT It was previously shown that the human U1A protein, one of three U1 small nuclear ribonucleoprotein-specific proteins, autoregulates its own production by binding to and inhibiting the polyadenylation of its own pre-mRNA. The U1A autoregulatory complex requires two molecules of U1A protein to cooperatively bind a 50-nucleotide polyadenylation-inhibitory element (PIE) RNA located in the U1A 3′ untranslated region. Based on both biochemical and nuclear magnetic resonance structural data, it was predicted that protein-protein interactions between the N-terminal regions (amino acids [aa] 1 to 115) of the two U1A proteins would form the basis for cooperative binding to PIE RNA and for inhibition of polyadenylation. In this study, we not only experimentally confirmed these predictions but discovered some unexpected features of how the U1A autoregulatory complex functions. We found that the U1A protein homodimerizes in the yeast two-hybrid system even when its ability to bind RNA is incapacitated. U1A dimerization requires two separate regions, both located in the N-terminal 115 residues. Using both coselection and gel mobility shift assays, U1A dimerization was also observed in vitro and found to depend on the same two regions that were found in vivo. Mutation of the second homodimerization region (aa 103 to 115) also resulted in loss of inhibition of polyadenylation and loss of cooperative binding of two U1A protein molecules to PIE RNA. This same mutation had no effect on the binding of one U1A protein molecule to PIE RNA. A peptide containing two copies of aa 103 to 115 is a potent inhibitor of polyadenylation. Based on these data, a model of the U1A autoregulatory complex is presented.


2020 ◽  
Author(s):  
Sisi Kang ◽  
Mei Yang ◽  
Suhua He ◽  
Yueming Wang ◽  
Xiaoxue Chen ◽  
...  

Abstract Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolated and profiled a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who had dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the mAb with the highest binding affinity (nCoV396) revealed changes in the epitopes and antigen’s allosteric regulation. Functionally, a virus-free complement hyper-activation analysis demonstrated that nCoV396 specifically compromises the N protein-induced complement hyper-activation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


2021 ◽  
Vol 22 (16) ◽  
pp. 9103
Author(s):  
Julita Gumna ◽  
Angelika Andrzejewska-Romanowska ◽  
David J. Garfinkel ◽  
Katarzyna Pachulska-Wieczorek

A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.


Sign in / Sign up

Export Citation Format

Share Document