scholarly journals Intrinsic and extrinsic regulation of human fetal bone marrow haematopoiesis and perturbations in Down syndrome

2021 ◽  
Author(s):  
Laura Jardine ◽  
Simone Webb ◽  
Issac Goh ◽  
Mariana Quiroga Londoño ◽  
Gary Reynolds ◽  
...  

Throughout postnatal life, haematopoiesis in the bone marrow (BM) maintains blood and immune cell production. Haematopoiesis first emerges in human BM at 12 post conception weeks while fetal liver (FL) haematopoiesis is still expanding. Yet, almost nothing is known about how fetal BM evolves to meet the highly specialised needs of the fetus and newborn infant. Here, we detail the development of fetal BM including stroma using single cell RNA-sequencing. We find that the full blood and immune cell repertoire is established in fetal BM in a short time window of 6-7 weeks early in the second trimester. Fetal BM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell (DC) subsets emerging for the first time. B-lymphocyte expansion occurs, in contrast with erythroid predominance in FL at the same gestational age. We identify transcriptional and functional differences that underlie tissue-specific identity and cellular diversification in fetal BM and FL. Finally, we reveal selective disruption of B-lymphocyte, erythroid and myeloid development due to cell intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in the fetal BM from constitutional chromosome anomaly Down syndrome during this crucial developmental time window.

1978 ◽  
Vol 148 (6) ◽  
pp. 1468-1477 ◽  
Author(s):  
PK Lala ◽  
GR Johnson

Spleen colonies produced by transplanting lethally irradiated mice with either 12 day fetal liver or adult bone marrow cells were found to contain B- lymphocyte colony-forming cells (BL-CFC) . The proportion of BL-CFC positive spleen colonies did not increase substantially between 8 and 14 days after transplantation, the range being 18-45 percent. However, the absolute number of BL-CFC per spleen colony varied considerably (between 1 and 10,318), although the majority of colonies contained less than 200 BL-CFC. Irrespective of the time after transplantation, smaller spleen colonies were found to have a higher frequency of BL-CFC than larger spleen colonies. To determine the possible clonal origin of BL-CFC from spleen colony- forming unit (CFU-S), CBA mice were injected with equal numbers of CBA and CBA T(6)/T(6) fetal liver or adult bone marrow cells. Analysis of 7-15-day spleen colonies demonstrated that 90 percent were either exclusively T(6) positive or T(6) negative and approximately equal numbers ofboth colony types were observed. B-lymphocyte colonies were grown and successfully karyotyped from 19 spleen colonies. When compared with the original spleen colony karyotype the B-lymphocyte colony cells karyotype was identical in all 19 cases. In 3 of the 19 colonies analyzed a mixture of T(6) positive and T(6) negative karyotypes was present and identical proportions of the karyotypes were present in the pooled B-lymphocyte colony cells and spleen colony cells. The data indicate that the B-lymphocyte colony-forming cells detected in spleen colonies are genuine members of the hemopoietic clone derived from the initiating hemopoietic stem cell (CFU-S).


1974 ◽  
Vol 140 (5) ◽  
pp. 1285-1302 ◽  
Author(s):  
Edmond A. Goidl ◽  
Gregory W. Siskind

The ontogeny of the ability of B lymphocytes to produce an antihapten response which is heterogeneous with respect to affinity for the antigenic determinant was studied in a cell transfer system. The heterogeneity of affinity of the immune response of lethally irradiated mice reconstituted with syngeneic, adult thymus cells and fetal or neonatal tissues as a source of B lymphocytes was studied. It was found that B cells from 17 day fetal liver or neonatal liver are highly restricted with respect to heterogeneity of affinity as compared with adult spleen or bone marrow. The B-cell population achieves an adult character with respect to heterogeneity of affinity by 2 wk of age. The peripheral lymphoid tissues (spleen) appear to mature in this respect more rapidly than do central lymphoid tissues (bone marrow). Spleens from 10-day old donors behave in an adult, heterogeneous manner while bone marrow from the same donors exhibit a marked restriction in heterogeneity of affinity. Germfree mice produce an immune response which is indistinguishable from conventionally reared adult animals with respect to heterogeneity of affinity. The earlier appearance of the ability to transfer a heterogeneous immune response in spleen as compared with bone marrow suggests that the increasing heterogeneity of the B-lymphocyte population which occurs between birth and 2 wk of age is the result of a differentiation event and not of a somatic mutation or recombination event.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 563-563 ◽  
Author(s):  
Oliver Tunstall-Pedoe ◽  
Josu de la Fuente ◽  
Phillip R. Bennett ◽  
Nicholas M. Fisk ◽  
Paresh Vyas ◽  
...  

Abstract Children with Down syndrome (DS) have a uniquely high frequency of acute megakaryoblastic leukemia (AMKL)- ~500-fold increased compared to children without trisomy 21 (T21). At least two genetic events are required but are not sufficient for DS-AMKL: T21 and N-terminal truncating mutations in the key megakaryocytic transcription factor GATA1. This tight association of T21 with GATA1 mutations and the development of AMKL in a narrow temporal window (fetal life-5yrs) makes DS-AMKL a highly informative model of multi-hit leukemogenesis in which the first steps occur in utero. However, the individual contributions of T21 and mutant GATA1 in the leukemogenesis are unclear. To specifically investigate the role of T21 in DS-AMKL and why leukemia-initiation is confined to fetal (or early post-natal) life we have studied fetal hemopoiesis in DS during the second and third trimester in 16 fetuses (gestational age 15–37 weeks) where an antenatal diagnosis of DS with T21 was made by amniotic fluid fetal cell karyotyping. Samples of fetal blood (n=13), fetal liver (n=9) and fetal bone marrow (n=8) were screened for mutations in the GATA1 gene genomic DNA by DHPLC or direct sequencing (sensitivity of detecting a GATA1 mutation is 1–5% by DHPLC). No GATA1 mutations were detected. This allowed us to study the impact of T21 independent of GATA1 mutation on fetal hemopoiesis. DS fetuses showed marked qualitative and quantitative abnormalities in hemopoiesis. While the total number of CD34+ cells in DS and normal fetal liver were comparable, DS fetuses had a striking increase in bi-potential megakaryocyte-erythroid progenitors (MEP; CD34+CD38+FcgloCD45RA+− 74.4% vs 27.0% of fetal liver CD34+/CD38+ cells. Peripheral blood from all DS fetuses studied compared to normal fetal blood samples showed dysmegakaryopoiesis (abnormally shaped and/or giant platelets and MK fragments), dyserythropoiesis (macrocytes, poikilocytes, basophilic stippling), increased numbers of blast cells and also had an increased percentage of MEPs − 40.3% vs 26.9%. By contrast, there was no difference in the number of MEP nor erythroid or MK lineage morphology in DS fetal bone marrow compared to normal fetal bone marrow. CD34+ cells from DS fetal liver and fetal blood expressed both fl GATA1 and GATA1s mRNA indicating that dysmegakaryopoiesis and erythropoiesis were not due to lack of expression of fl GATA1. These data indicate, for the first time, that T21 by itself profoundly disturbs megakaryopoiesis and erythropoiesis and leads to an increased of frequency of MEP. This has important implications since it provides a testable hypothesis for the role of T21 in the initiating step of AMKL, namely that T21 expands a fetal liver-derived progenitor compartment which forms a substrate upon which GATA1 mutations then confer a further selective advantage.


2020 ◽  
Author(s):  
Amanda Baizan-Edge ◽  
Bryony A. Stubbs ◽  
Michael J. T. Stubbington ◽  
Daniel J. Bolland ◽  
Kristina Tabbada ◽  
...  

AbstractGeneration of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. It has been proposed that interleukin-7 receptor (IL-7R) signalling is necessary for Igh recombination, but this has been challenging to partition from the receptor’s role in B cell survival and proliferation. By generating the first detailed description of the Igh repertoire of murine IL-7Rα-/- bone marrow B cells, we demonstrate that IL-7R signalling profoundly influences VH gene selection during VH-to-DJH recombination. We find skewing towards usage of 3’ VH genes during de novo VH-to-DJH recombination that is more severe than the fetal liver (FL) B cell repertoire, and we now show a role for IL-7R signalling in DH-to-JH recombination. Transcriptome and accessibility analyses suggests reduced expression of B lineage-specific transcription factors (TFs) and their targets, and loss of DH and VH antisense transcription in IL-7Rα-/- B cells. These results refute models suggesting that IL-7R signalling is only required for survival and proliferation, and demonstrate a pivotal role in shaping the Igh repertoire by activating underpinning epigenetic mechanisms.


2006 ◽  
Vol 13 (2) ◽  
pp. 193-201 ◽  
Author(s):  
David J. Feola ◽  
Beth A. Garvy

ABSTRACT We have previously shown that zidovudine plus sulfamethoxazole-trimethoprim exposure decreases immune cell populations in the bone marrow of healthy mice by inducing apoptosis. The hypothesis of the current work was that this toxicity would have an adverse impact on the immune response. To determine this, BALB/c mice were treated with zidovudine, sulfamethoxazole-trimethoprim, the combination of both drugs, or vehicle only (control) via oral gavage for 21 days. On day 4 after dosing completion, the mice were infected intratracheally with 1 × 107 Pneumocystis murina organisms. Immune cell populations (in lung digest, bronchoalveolar lavage fluid, tracheobronchial lymph node, and bone marrow samples), the lung Pneumocystis burden, and serum Pneumocystis-specific antibody titers were determined at days 6, 10, and 20 postinfection. While total bone marrow cellularity was recovered by day 6 postinfection in the combination exposure group, B-cell numbers did not recover until 10 days postinfection, primarily due to the persistent depletion of the late pre-B-cell phenotype. The numbers of CD4+ and CD8+ T cells, as well as the numbers of total B cells and activated B cells in tracheobronchial lymph nodes, were decreased at days 10 and 20 as a result of zidovudine plus sulfamethoxazole-trimethoprim exposure compared to the numbers in the control group. No significant differences in lung lavage or lung digest cell populations were observed. There was a trend of a delay in Pneumocystis clearance in the combination treatment group, and Pneumocystis-specific serum immunoglobulin G titers were reduced at day 20 postinfection. Together, these data indicate that the combination of zidovudine and sulfamethoxazole-trimethoprim adversely affects the humoral immune response to Pneumocystis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1272-1272 ◽  
Author(s):  
Karen Wieland ◽  
Andrew Woo ◽  
Thomas Akie ◽  
Alan B. Cantor

Abstract Abstract 1272 Poster Board I-294 About ten percent of infants with Down syndrome (DS) are born with a transient myeloproliferative disorder (DS-TMD), which spontaneously resolves within the first few months of life. However, the basis for this resolution remains unknown. Acquired mutations leading to exclusive production of a short isoform of the transcription factor GATA-1 (GATA-1s) occur in all cases of DS-TMD, and knock-in mice that exclusively produce GATA-1s have hyperproliferation of megakaryocytes during early fetal liver hematopoiesis, but not during later developmental stages. In this study, we found striking upregulation of the interferon-αa (IFN-αa) receptor and multiple IFN-αa responsive genes, including Ifi203, Ifi205, Irf-1, Irf-8, and Ifitm6, in immunophenotypically isolated megakaryocyte progenitor cells (MkPs) from bone marrow versus embryonic day 13.5 (e13.5) fetal liver of wild type mice. These differences were confirmed at the protein level in megakaryocytes by in situ immunohistochemistry. Addition of IFN-αa to GATA-1s containing e13.5 fetal liver MkPs reduces their hyperproliferation in vitro in a dose-dependent manner. Conversely, injection of neutralizing IFN-αa/β antibodies, but not control IgG, into adult GATA-1s mice markedly increases the percentage of bone marrow CD41+ cells and morphologically recognizable megakaryocytes, in contrast to wild type mice. We propose that increases in IFN-αa signaling during megakaryocyte ontogeny may account for the developmental stage-specific effects of GATA-1s on megakaryocyte hyperproliferation, and possibly the spontaneous resolution of DS-TMD. Interestingly, the genes encoding the IFN-αa/β receptor are located on human chromosome 21 and are expressed at 1.6 times that in trisomy versus disomy 21 cells. We speculate that increased interferon alpha signaling during embryogenesis may be the basis for the strong selective pressure for GATA-1s producing mutations in trisomy 21 fetuses in the first place. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 919-919 ◽  
Author(s):  
Zhengqi Wang ◽  
Geqiang Li ◽  
Zizhen Kang ◽  
Silvia T Bunting ◽  
William Tse ◽  
...  

Abstract Abstract 919 Signal transducer and activator of transcription 5 (STAT5) is a critical regulator of normal and leukemic lympho-myeloid hematopoiesis through activation downstream of early-acting cytokines, their receptors, and janus kinases (JAKs). Despite upstream activating mutations driving JAK-STAT phosphorylation in precursor-B acute lymphoblastic leukemia (B-ALL), activated JAK-STAT is absent from the aggressive “double hit” lymphomas expressing myc and bcl-2. Using C57BL/6 background transgenic mouse models for myc and bcl-2, we set out to determine whether endogenous STAT5 functions in guarding against B-ALL induced by combined myc/bcl-2 or myc alone. We first determined whether constitutive expression of bcl-2 driven from the H2K promoter and Moloney murine leukemia virus enhancer in C57BL/6 background STAT5-deficient hematopoietic cells could bypass blocks in B-lymphocyte development. Transgenic H2K/bcl-2 expression in hypomorphic STAT5abDN/DN mice, which are leaky and still produce some mature B-lymphocytes, largely rescued peripheral B-lymphocyte survival to near normal levels but could only rescue about 10% of the multilineage hematopoietic stem cell (HSC) competitive repopulating defect. Complete deletion of the entire STAT5ab locus resulted in the expected severe block of B-cell development at the pre-pro-B-cell stage following transplantation of STAT5ab null/null fetal liver cells into irradiated wild type or common γC−/− recipients. Peripheral B-lymphocyte development could not be restored by transgenic bcl-2 alone in the absence of STAT5. However, transgenic myc driven from an immunoglobulin H chain enhancer (Emu/myc) combined with H2K/bcl-2 induced B-ALL peripheral counts as high as 1.1 × 105 B-cells/ul and reduced latency (a median survival of 44 days) compared to wild-type control (a median survival of 91 days) in either lethally-irradiated (P<0.001; N range from 8–14 mice/group) or sub-lethally-irradiated cohorts of fetal liver transplanted mice (P=0.007; N range 10–20 mice/group). B-ALL in mice with or without STAT5 was a mix of Pro-B and Pre-B ALL (IgM-CD43+B220+CD19+/−CD4+/−) and morphologically similar in the spleen and bone marrow. Multi-parameter flow cytometry analysis of bone marrow cells from STAT5ab null/null fetal liver transplanted mice (N=4) showed that deletion of STAT5 significantly reduced by 11.5-fold (P=0.004) the fraction of long-term repopulating HSC (CD150+CD48-) c-Kit+Lin-Sca-1+ (KLS). In an independent adult Mx1-Cre conditional knockout of STAT5 by pI:pC treatment, lymphomas induced by Myc alone were also accelerated (P=0.05; N range 14–15 mice/group) with STAT5 maintained deleted in sorted B-cells. These mice also had reduced CD150+CD48- KLS cells (5.6-fold; N=4; P=0.006). Interestingly, several phenotypes recently reported as associated with increased HSC cycling and lymphoid-biased differentiation were observed. The mean fluorescence intensity of slamf1 (CD150) was reduced 2.2-fold (P<0.001; N=4) in conditional knockout mice and the B-lymphoid biased CD48+CD150+ or CD48-CD150- KLS cells representing short-term HSC/multipotent progenitors were not significantly reduced. Microarray analyses of the KLS fraction provided evidence that STAT5 promotes HSC maintenance and myeloid potential (limiting lymphoid commitment, cycling) in the KLS compartment. The deletion of STAT5 reduced expression of HSC self-renewal and quiescence promoting genes and increased immunoglobulin and B-lymphoid transcripts. Combined with the pre-pro-B-cell block, loss of STAT5 promotes accumulation of B-lineage committed progenitors as potential ALL initiating cells. The effects of bcl-2 and myc hits on STAT5 null/null hematopoietic cells are currently being further characterized with respect to B-cell developmental blocks and molecular heterogeneity. B-ALL has a high relapse rate and is driven by clonally diverse tumor propagating populations. Our work may have important implications for ALL drug therapy. In conclusion, we demonstrate that STAT5, considered primarily as functioning like an oncogene in hematologic malignancies upon persistent activation, can play a tumor suppressor-like role in subsets of B-ALL. These data add to an emerging understanding that endogenous STAT5 can suppress some cancers and transcriptionally regulate several cell cycle inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1753-1753
Author(s):  
Agnieszka A. Wendorff ◽  
Jian Chen ◽  
Yue Li ◽  
Johann K. Hitzler

Abstract Abstract 1753 Background. Young children with Down syndrome (DS; constitutional trisomy 21) have a 150-fold higher risk of developing acute myeloid leukemia (AML). Blast cells are detectable in the peripheral blood of approximately 10% of newborns with DS; these indicate the frequent presence of a preleukemic disorder termed transient leukemia (TL)/transient myeloproliferative disorder (TMD). This disorder of fetal hematopoiesis is triggered by somatic mutations of the hematopoietic transcription factor GATA1 exclusively in the context of cellular trisomy 21. The majority of TL cases undergo spontaneous resolution by unknown mechanisms. In contrast, approximately 1 of 5 cases progress to AML within a defined postnatal window (first 4 years of life). We hypothesized that the resolution of TL results from the absence of essential environmental cues following the developmental transition from prenatal fetal liver (FL) hematopoiesis to postnatal blood cell formation in the bone marrow (BM). We previously observed that primary blasts of human TL lack the proliferative expansion in the bone marrow environment of xenotransplant recipients that is observed for blasts of DS-AML. Consequently, we aimed to identify the signals provided by the FL niche that support the survival and proliferation of human TL cells. Methods and Results. To determine the differential impact of the hematopoietic niche provided by FL and postnatal BM on TL cells, we cultured primary human TL cells on murine stromal cell lines that were derived either from FL (AFT024) or adult BM (MS-5). The absolute number of primary TL cells increased >80-fold during culture on FL-derived stromal cells for 2 weeks. In contrast, BM-derived MS-5 stromal cells supported only a moderate expansion (<10-fold), which was associated with enhanced induction of apoptotic cell death and evidence of partial myeloid differentiation. Direct interaction between TL and stromal cells – acting co-operatively with soluble growth factors – appears indispensable for the maintenance of TL cell survival and stimulation of proliferation. Functional studies identified the very late antigen-4 [VLA-4 (CD49d)]/vascular cell adhesion molecule-1 (VCAM-1) binding partners as putative mediator of this interaction. Furthermore, insulin-like growth factor 2 (IGF-2) supplementation augmented the proliferation of TL cells specifically in the context of the FL niche. Neither IGF-2 alone or in combination with BM-derived stroma promoted expansion of TL cells. Work currently underway aims at identification of additional molecular pathways involved in TL-cell regulation, including elucidating the potential role of Notch signaling in development and maintenance of TL cells. Conclusions. Cooperative signals that are preferentially provided by the hematopoietic environment of the fetal liver support the survival and proliferation of human TL cells. These signals consist of a combination of cell-cell contact, in part mediated by VLA-4/ VCAM1, and soluble growth factors such as IGF-2. The identification and disruption of signaling pathways that are essential for the survival and expansion of TL blasts has the potential to prevent development of AML in children with Down syndrome by targeted elimination of the preleukemic TL clone. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 1133-1147 ◽  
Author(s):  
R. Palacios ◽  
S. Nishikawa

We have used a c-kit-specific monoclonal antibody, immuno-fluorescence staining and flow fluorocytometry or microscopy analysis to assess the cell surface expression of the c-kit receptor on a panel of non-transformed clones representing different stages of T- and B-lymphocyte development, freshly isolated lymphoid cells from thymus, bone marrow and spleen of young adult C57BL/6 mice and cells from yolk sac, thymus and liver of developing C57BL/6 mouse embryos. Pro-T, Pro-B and Pre-B clones derived from thymus or liver of 14-day embryos are c-kit+. Starting at day 8 to 8.5 in yolk sac, day-10 in fetal liver, and day 11 to 12 in fetal thymus, there are many c-kit+ cells. The number of c-kit+ cells in liver and thymus increases up to day 15 and progressively decreases thereafter. Cell sorter purified c-kit+ day 14 fetal liver cells fully reconstitute the T and B cell compartments of immunodeficient Scid mice. Stromal cells or epithelial cells derived from fetal thymus or liver, which can support growth and differentiation of c-kit+ lymphocyte progenitor clones, synthesize mRNA for Steel Factor (SF), the ligand of c-kit. In the adult mouse, however, c-kit expression is restricted to very early stages of T- and B-lymphocyte development (multipotent progenitors, B-cell/myelocytic progenitors, Pro-T and Pro-B lymphocyte progenitors). Most cells at the Pre-T, Pre-B and later stages of development do not bear detectable c-kit. Using Cos-1 cells transfected with mouse SF-cDNA and an antagonistic c-kit receptor-specific antibody, we show that the c-kit/SF system contributes to the survival of lymphocyte progenitors and enhances the proliferative responses of these cells to other growth factors (i.e. IL2, IL3, IL4, IL7). However, the c-kit receptor/SF ligand pair is neither sufficient nor necessary for the differentiation of lymphocyte progenitors into mature T- or B-lymphocytes. Finally, in stromal cell lines from fetal liver and adult bone marrow and thymic epithelial cell lines the level of steady state SF-RNA transcripts is inversely correlated with that of IL-7-mRNA. Moreover, IL7 inhibits the synthesis of SF-mRNA in stromal cells and rIL6 abrogates this inhibitory effect of rIL7. Thus, the expression of SF in stromal cells is subjected to complex regulation by other cytokines produced by the same stromal cells or by neighboring cells in a given microenvironment.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document