scholarly journals Environmental transmission of Pseudogymnoascus destructans to hibernating little brown bats

2021 ◽  
Author(s):  
Alan C Hicks ◽  
Scott Darling ◽  
Joel Flewelling ◽  
Ryan von Linden ◽  
Carol U Meteyer ◽  
...  

Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evan L. Pannkuk ◽  
Nicole A. S.-Y. Dorville ◽  
Yvonne A. Dzal ◽  
Quinn E. Fletcher ◽  
Kaleigh J. O. Norquay ◽  
...  

AbstractWhite-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.


2015 ◽  
Vol 6 (2) ◽  
pp. 360-370 ◽  
Author(s):  
Michael J. Lacki ◽  
Luke E. Dodd ◽  
Rickard S. Toomey ◽  
Steven C. Thomas ◽  
Zachary L. Couch ◽  
...  

Abstract The rapid colonization of the Pseudogymnoascus destructans fungus across cave systems in eastern North America and the associated bat mortalities (white-nose syndrome; WNS), necessitates studies of cave-hibernating bats that remain unaffected by, or in close proximity to, the leading edge of the fungal distribution to provide baseline predisturbance data from which to assess changes due to fungal effects. Studies of the physiological ecology of cave-hibernating bats during the spring staging and autumn swarming seasons are few, and an understanding of patterns in body condition of bats associated with entry into and emergence from hibernation is incomplete. We sampled bats at the entrance to a cave in Mammoth Cave National Park, Kentucky, during swarming and staging, prior to (2011 and 2012), concurrent with (2013), and following (2014) the arrival of the WNS fungus. We evaluated seasonal and annual changes in body mass and body condition of bats entering and leaving the cave. We captured 1,232 bats of eight species. Sex ratios of all species were male-biased. Capture success was substantially reduced in 2014, following the second winter after arrival of the WNS fungus. Significant temporal variation in body mass and body mass index was observed for little brown bats Myotis lucifugus, northern long-eared bats M. septentrionalis, and tri-colored bats Perimyotis subflavus, but not Indiana bats M. sodalis. Little brown bats and northern long-eared bats demonstrated significant increases in mean body mass index in 2014; this pattern likely reflected a relatively better body condition in bats that survived exposure to the WNS fungus. Most species demonstrated highest body mass and body mass index values in late swarming compared with other sampling periods, with tri-colored bats showing the greatest percent increase in body mass (42.5%) and body mass index (42.9%) prior to entering hibernation. These data indicate significant intraspecific variation in body condition of cave-hibernating bat species, both among years and between the seasons of autumn swarming and spring staging. We suggest this variation is likely to have implications for the relative vulnerability of species to WNS infection across the distribution of the Pseudogymnoascus fungus.


2020 ◽  
Vol 11 (2) ◽  
pp. 583-587
Author(s):  
Allen Kurta ◽  
Rodney W. Foster ◽  
Brooke A. Daly ◽  
Ashley K. Wilson ◽  
Robin M. Slider ◽  
...  

Abstract White-nose syndrome is an introduced fungal disease that has reduced the size of hibernating populations of little brown bats Myotis lucifugus by 90% across much of eastern North America since 2007. Herein, we report the recapture of eight banded little brown bats, all males, with minimum ages of 18.6–25.6 y. The recaptures occurred during winter 2019–2020, at a hibernaculum in Michigan where white-nose syndrome likely has been present since 2013–2014, indicating that these old and apparently healthy males are in their seventh season of exposure to the disease. Hence, our data suggest that a long life in little brown bats and existence of white-nose syndrome are not necessarily incompatible.


2013 ◽  
Vol 80 (5) ◽  
pp. 1726-1731 ◽  
Author(s):  
Megan M. Shuey ◽  
Kevin P. Drees ◽  
Daniel L. Lindner ◽  
Paul Keim ◽  
Jeffrey T. Foster

ABSTRACTWhite-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent,Pseudogymnoascus destructans(formerlyGeomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiatingP. destructansfrom closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific toP. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifyingP. destructans, otherPseudogymnoascusspp., andGeomycesspp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi.


2011 ◽  
Vol 2 (2) ◽  
pp. 125-134 ◽  
Author(s):  
W. Mark Ford ◽  
Eric R. Britzke ◽  
Christopher A. Dobony ◽  
Jane L. Rodrigue ◽  
Joshua B. Johnson

Abstract White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the landscape as affected by the occurrence of WNS.


2014 ◽  
Vol 9 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Konrad Sachanowicz ◽  
Arkadiusz Stępień ◽  
Mateusz Ciechanowski

AbstractPseudogymnoascus destructans (Pd), a parasitic fungus (being responsible for a disease known as white-nose syndrome, WNS) that caused mass mortality of cave-dwelling, hibernating bats in North America, appears to be native of Europe, where it also occurs on wintering bats, but no similar outbreaks of WNS have been recorded. Herein, we provide the first account on prevalence and phenology of P. destructans in Poland. Bats were counted once per month, from October or January to May (2010-2013), in an abandoned ore mine in southern Poland. Presence of P. destructans in two samples was confirmed by sequencing of isolated fungal DNA. Observations of phenotypically identical mycosis on bats hibernating at this site in March 2006 are likely to be the first known records of P. destructans from Poland. All Pd-suspected individuals were Myotis myotis with an exception of one Myotis daubentonii. The first Pd-suspected bats were noted in mid-February, but their number was the highest in March, what overlapped with maximum numbers of hibernating M. myotis. The prevalence in March was 7%–27% of M. myotis individuals. No mass mortality of bats was observed in the mine, with only three dead individuals found in the hibernaculum which hosted up to 130 bats, representing 6–7 species.


2014 ◽  
Vol 105 (3) ◽  
pp. 354-364 ◽  
Author(s):  
C. M. Miller-Butterworth ◽  
M. J. Vonhof ◽  
J. Rosenstern ◽  
G. G. Turner ◽  
A. L. Russell

Sign in / Sign up

Export Citation Format

Share Document