scholarly journals Object and Instance Detection Within Image Scenes

Author(s):  
ADENISIMI DANIEL

This paper compares state-of-the-art methods in object and instance detection and examines why YOLO (You Only Look Once) outperforms top detection methods. Different Pascal VOC dataset is used as the benchmark to explore mean average precision (mAP). YOLO is twice as accurate as prior works on real-time detection. The outcome of merging YOLO with Fast R-CNN is an increased mean average precision (mAP) which results in a performance boost. Hence, YOLO is an enhanced model of top detection methods.

2021 ◽  
pp. 1-11
Author(s):  
Tingting Zhao ◽  
Xiaoli Yi ◽  
Zhiyong Zeng ◽  
Tao Feng

YTNR (Yunnan Tongbiguan Nature Reserve) is located in the westernmost part of China’s tropical regions and is the only area in China with the tropical biota of the Irrawaddy River system. The reserve has abundant tropical flora and fauna resources. In order to realize the real-time detection of wild animals in this area, this paper proposes an improved YOLO (You only look once) network. The original YOLO model can achieve higher detection accuracy, but due to the complex model structure, it cannot achieve a faster detection speed on the CPU detection platform. Therefore, the lightweight network MobileNet is introduced to replace the backbone feature extraction network in YOLO, which realizes real-time detection on the CPU platform. In response to the difficulty in collecting wild animal image data, the research team deployed 50 high-definition cameras in the study area and conducted continuous observations for more than 1,000 hours. In the end, this research uses 1410 images of wildlife collected in the field and 1577 wildlife images from the internet to construct a research data set combined with the manual annotation of domain experts. At the same time, transfer learning is introduced to solve the problem of insufficient training data and the network is difficult to fit. The experimental results show that our model trained on a training set containing 2419 animal images has a mean average precision of 93.6% and an FPS (Frame Per Second) of 3.8 under the CPU. Compared with YOLO, the mean average precision is increased by 7.7%, and the FPS value is increased by 3.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3374
Author(s):  
Hansen Liu ◽  
Kuangang Fan ◽  
Qinghua Ouyang ◽  
Na Li

To address the threat of drones intruding into high-security areas, the real-time detection of drones is urgently required to protect these areas. There are two main difficulties in real-time detection of drones. One of them is that the drones move quickly, which leads to requiring faster detectors. Another problem is that small drones are difficult to detect. In this paper, firstly, we achieve high detection accuracy by evaluating three state-of-the-art object detection methods: RetinaNet, FCOS, YOLOv3 and YOLOv4. Then, to address the first problem, we prune the convolutional channel and shortcut layer of YOLOv4 to develop thinner and shallower models. Furthermore, to improve the accuracy of small drone detection, we implement a special augmentation for small object detection by copying and pasting small drones. Experimental results verify that compared to YOLOv4, our pruned-YOLOv4 model, with 0.8 channel prune rate and 24 layers prune, achieves 90.5% mAP and its processing speed is increased by 60.4%. Additionally, after small object augmentation, the precision and recall of the pruned-YOLOv4 almost increases by 22.8% and 12.7%, respectively. Experiment results verify that our pruned-YOLOv4 is an effective and accurate approach for drone detection.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


2020 ◽  
Vol 9 (6) ◽  
pp. 370
Author(s):  
Atakan Körez ◽  
Necaattin Barışçı ◽  
Aydın Çetin ◽  
Uçman Ergün

The detection of objects in very high-resolution (VHR) remote sensing images has become increasingly popular with the enhancement of remote sensing technologies. High-resolution images from aircrafts or satellites contain highly detailed and mixed backgrounds that decrease the success of object detection in remote sensing images. In this study, a model that performs weighted ensemble object detection using optimized coefficients is proposed. This model uses the outputs of three different object detection models trained on the same dataset. The model’s structure takes two or more object detection methods as its input and provides an output with an optimized coefficient-weighted ensemble. The Northwestern Polytechnical University Very High Resolution 10 (NWPU-VHR10) and Remote Sensing Object Detection (RSOD) datasets were used to measure the object detection success of the proposed model. Our experiments reveal that the proposed model improved the Mean Average Precision (mAP) performance by 0.78%–16.5% compared to stand-alone models and presents better mean average precision than other state-of-the-art methods (3.55% higher on the NWPU-VHR-10 dataset and 1.49% higher when using the RSOD dataset).


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1451
Author(s):  
Muhammad Hammad Saleem ◽  
Sapna Khanchi ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

The identification of plant disease is an imperative part of crop monitoring systems. Computer vision and deep learning (DL) techniques have been proven to be state-of-the-art to address various agricultural problems. This research performed the complex tasks of localization and classification of the disease in plant leaves. In this regard, three DL meta-architectures including the Single Shot MultiBox Detector (SSD), Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully Convolutional Networks (RFCN) were applied by using the TensorFlow object detection framework. All the DL models were trained/tested on a controlled environment dataset to recognize the disease in plant species. Moreover, an improvement in the mean average precision of the best-obtained deep learning architecture was attempted through different state-of-the-art deep learning optimizers. The SSD model trained with an Adam optimizer exhibited the highest mean average precision (mAP) of 73.07%. The successful identification of 26 different types of defected and 12 types of healthy leaves in a single framework proved the novelty of the work. In the future, the proposed detection methodology can also be adopted for other agricultural applications. Moreover, the generated weights can be reused for future real-time detection of plant disease in a controlled/uncontrolled environment.


2014 ◽  
Vol 644-650 ◽  
pp. 1172-1175
Author(s):  
Ya Li Qi ◽  
Ye Li Li ◽  
Cui Wang ◽  
Li Kun Lu

Barcode detection has many applications and detection methods. Most applications have their own requirements for detection accuracy and speed. This paper has its requirement for speed in the real time system to detection inclination defect of barcode. It predominantly researches on two algorithms and their applications on 1-dimentional barcode scanning. One is location and the other is angle of inclination. The algorithms are particularly useful for real time detection of barcodes in online system with image vision devices.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 191
Author(s):  
Bo Gong ◽  
Daji Ergu ◽  
Ying Cai ◽  
Bo Ma

Wheat head detection can estimate various wheat traits, such as density, health, and the presence of wheat head. However, traditional detection methods have a huge array of problems, including low efficiency, strong subjectivity, and poor accuracy. In this paper, a method of wheat-head detection based on a deep neural network is proposed to enhance the speed and accuracy of detection. The YOLOv4 is taken as the basic network. The backbone part in the basic network is enhanced by adding dual spatial pyramid pooling (SPP) networks to improve the ability of feature learning and increase the receptive field of the convolutional network. Multilevel features are obtained by a multipath neck part using a top-down to bottom-up strategy. Finally, YOLOv3′s head structures are used to predict the boxes of wheat heads. For training images, some data augmentation technologies are used. The experimental results demonstrate that the proposed method has a significant advantage in accuracy and speed. The mean average precision of our method is 94.5%, and the detection speed is 71 FPS that can achieve the effect of real-time detection.


2020 ◽  
Author(s):  
Nhan T. Nguyen ◽  
Dat Q. Tran ◽  
Dung B. Nguyen

ABSTRACTWe describe in this paper our deep learning-based approach for the EndoCV2020 challenge, which aims to detect and segment either artefacts or diseases in endoscopic images. For the detection task, we propose to train and optimize EfficientDet—a state-of-the-art detector—with different EfficientNet backbones using Focal loss. By ensembling multiple detectors, we obtain a mean average precision (mAP) of 0.2524 on EDD2020 and 0.2202 on EAD2020. For the segmentation task, two different architectures are proposed: UNet with EfficientNet-B3 encoder and Feature Pyramid Network (FPN) with dilated ResNet-50 encoder. Each of them is trained with an auxiliary classification branch. Our model ensemble reports an sscore of 0.5972 on EAD2020 and 0.701 on EDD2020, which were among the top submitters of both challenges.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jiuwu Sun ◽  
Zhijing Xu ◽  
Shanshan Liang

With the rapid development of the marine industry, intelligent ship detection plays a very important role in the marine traffic safety and the port management. Current detection methods mainly focus on synthetic aperture radar (SAR) images, which is of great significance to the field of ship detection. However, these methods sometimes cannot meet the real-time requirement. To solve the problems, a novel ship detection network based on SSD (Single Shot Detector), named NSD-SSD, is proposed in this paper. Nowadays, the surveillance system is widely used in the indoor and outdoor environment, and its combination with deep learning greatly promotes the development of intelligent object detection and recognition. The NSD-SSD uses visual images captured by surveillance cameras to achieve real-time detection and further improves detection performance. First, dilated convolution and multiscale feature fusion are combined to improve the small objects’ performance and detection accuracy. Second, an improved prediction module is introduced to enhance deeper feature extraction ability of the model, and the mean Average Precision (mAP) and recall are significant improved. Finally, the prior boxes are reconstructed by using the K-means clustering algorithm, the Intersection-over-Union (IoU) is higher, and the visual effect is better. The experimental results based on ship images show that the mAP and recall can reach 89.3% and 93.6%, respectively, which outperforms the representative model (Faster R-CNN, SSD, and YOLOv3). Moreover, our model’s FPS is 45, which can meet real-time detection acquirement well. Hence, the proposed method has the better overall performance and achieves higher detection efficiency and better robustness.


Sign in / Sign up

Export Citation Format

Share Document