scholarly journals Steps to (s)-stereoisomers: Rationalization of a standard Short-chain dehydrogenase for the reduction of multiple pharmaceutical ketone intermediates

2021 ◽  
Author(s):  
Anirudh P Shanbhag ◽  
Sreenath Rajagopal ◽  
Nainesh Katagihallimath ◽  
Arindam Ghatak ◽  
Ramaswamy S. ◽  
...  

Short-chain dehydrogenases/reductases (SDRs) are an essential family of enzymes used to synthesize enantiopure alcohols. Several studies describe prospected or engineered candidates for converting substrates of interest using cost and time-intensive high-throughput approaches. For catalysis, SDRs are classified into five types based on chain length and cofactor binding site. Of these, the shorter Classical and the longer Extended enzymes participate in ketoreduction. However, comparative analysis of various modelled SDRs reveals a length independent conserved N-terminal Rossmann fold and a variable C-terminus region. The latter domain is hypothesized to affect the flexibility of the enzyme. We have used machine learning on this flexible domain to build a rationale to screen promiscuous SDRs. A dataset consisting of physicochemical properties derived from the amino-acid composition of enzymes is used to select closely associated promiscuous mesophilic enzymes. The resulting in vitro studies on pro-pharmaceutical substrates illustrate a direct correlation between the C-terminal lid-loop structure, enzyme melting temperature and the turnover number. We present a walkthrough for exploring promiscuous SDRs for catalyzing enantiopure alcohols of industrial importance.

2000 ◽  
Vol 74 (19) ◽  
pp. 9028-9038 ◽  
Author(s):  
J.-B. Nousbaum ◽  
S. J. Polyak ◽  
S. C. Ray ◽  
D. G. Sullivan ◽  
A. M. Larson ◽  
...  

ABSTRACT The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. In this study, the relationship between NS5A mutations and selection pressures before and during antiviral therapy and virologic response to therapy were investigated. Full-length NS5A clones were sequenced from 20 HCV genotype 1-infected patients in a prospective, randomized clinical trial of IFN induction (daily) therapy and IFN plus ribavirin combination therapy. Pretreatment NS5A nucleotide and amino acid phylogenies did not correlate with clinical IFN responses and domains involved in NS5A functions in vitro were all well conserved before and during treatment. A consensus IFN sensitivity-determining region (ISDR237–276) sequence associated with IFN resistance was not found, although the presence of Ala245 within the ISDR was associated with nonresponse to treatment in genotype 1a-infected patients (P < 0.01). There were more mutations in the 26 amino acids downstream of the ISDR required for PKR binding in pretreatment isolates from responders versus nonresponders in both HCV-1a- and HCV-1b-infected patients (P < 0.05). In HCV-1a patients, more amino acid changes were observed in isolates from IFN-sensitive patients (P < 0.001), and the mutations appeared to be concentrated in two variable regions in the C terminus of NS5A, that corresponded to the previously described V3 region and a new variable region, 310 to 330. Selection of pretreatment minor V3 quasispecies was observed within the first 2 to 6 weeks of therapy in responders but not nonresponders, whereas the ISDR and PKR binding domains did not change in either patient response group. These data suggest that host-mediated selective pressures act primarily on the C terminus of NS5A and that NS5A can perturb or evade the IFN-induced antiviral response using sequences outside of the putative ISDR. Mechanistic studies are needed to address the role of the C terminus of NS5A in HCV replication and antiviral resistance.


1989 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.


1998 ◽  
Vol 336 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Leen AMERY ◽  
Chantal BREES ◽  
Myriam BAES ◽  
Chiaki SETOYAMA ◽  
Retsu MIURA ◽  
...  

The functionality of the C-terminus (Ser-Asn-Leu; SNL) of human d-aspartate oxidase, an enzyme proposed to have a role in the inactivation of synaptically released d-aspartate, as a peroxisome-targeting signal (PTS1) was investigated in vivoand in vitro. Bacterially expressed human d-aspartate oxidase was shown to interact with the human PTS1-binding protein, peroxin protein 5 (PEX5p). Binding was gradually abolished by carboxypeptidase treatment of the oxidase and competitively inhibited by a Ser-Lys-Leu (SKL)-containing peptide. After transfection of mouse fibroblasts with a plasmid encoding green fluorescent protein (GFP) extended by PKSNL (the C-terminal pentapeptide of the oxidase), a punctate fluorescent pattern was evident. The modified GFP co-localized with peroxisomal thiolase as shown by indirect immunofluorescence. On transfection in fibroblasts lacking PEX5p receptor, GFP–PKSNL staining was cytosolic. Peroxisomal import of GFP extended by PGSNL (replacement of the positively charged fourth-last amino acid by glycine) seemed to be slower than that of GFP–PKSNL, whereas extension by PKSNG abolished the import of the modified GFP. Taken together, these results indicate that SNL, a tripeptide not fitting the PTS1 consensus currently defined in mammalian systems, acts as a functional PTS1 in mammalian systems, and that the consensus sequence, based on this work and that of other groups, has to be broadened to (S/A/C/K/N)-(K/R/H/Q/N/S)-L.


2002 ◽  
Vol 366 (3) ◽  
pp. 863-872 ◽  
Author(s):  
Bouchaib BAHBOUHI ◽  
Nathalie CHAZAL ◽  
Nabil Georges SEIDAH ◽  
Cristina CHIVA ◽  
Marcelo KOGAN ◽  
...  

The aim of the present study was to evaluate the capacity of synthetic l- and d-peptides encompassing the HIV-1BRU gp160 REKR cleavage site to interfere with HIV and simian immuno-deficiency virus (SIV) replication and maturation of the envelope glycoprotein (Env) precursors. To facilitate their penetration into cells, a decanoyl (dec) group was added at the N-terminus. The sequences synthesized included dec5d or dec5l (decREKRV), dec9d or dec9l (decRVVQREKRV) and dec14d or dec14l (TKAKRRVVQREKRV). The peptide dec14d was also prepared with a chloromethane (cmk) group as C-terminus. Because l-peptides exhibit significant cytotoxicity starting at 35μM, further characterization was conducted mostly with d-peptides, which exhibited no cytotoxicity at concentrations higher than 70μM. The data show that only dec14d and dec14dcmk could inhibit HIV-1BRU, HIV-2ROD and SIVmac251 replication and their syncytium-inducing capacities. Whereas peptides dec5d and dec9d were inactive, dec14dcmk was at least twice as active as peptide dec14d. At the molecular level, our data show a direct correlation between anti-viral activity and the ability of the peptides to interfere with maturation of the Env precursors. Furthermore, we show that when tested in vitro the dec14d peptide inhibited PC7 with an inhibition constant Ki = 4.6μM, whereas the peptide dec14l preferentially inhibited furin with a Ki = 28μM. The fact that PC7 and furin are the major prohormone convertases reported to be expressed in T4 lymphocytes, the principal cell targets of HIV, suggests that they are involved in the maturation of HIV and SIV Env precursors.


2001 ◽  
Vol 358 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Yoshiyuki ISHII ◽  
Fumio AMANO

SulA protein, a cell division inhibitor in Escherichia coli, is degraded by Lon protease. The C-terminal eight residues of SulA have been shown to be recognized by Lon; however, it remains to be elucidated which amino acid in the C-terminus of SulA is critical for the recognition of SulA by Lon. To clarify this point, we constructed mutants of SulA with changes in the C-terminal residues, and examined the accumulation and stability of the resulting mutant SulA proteins in vivo. Substitution of the extreme C-terminal histidine residue with another amino acid led to marked accumulation and high stability of SulA in lon+ cells. A SulA mutant in which the C-terminal eight residues were deleted (SulAC161) showed high accumulation and stability, but the addition of histidine to the C-terminus of SulAC161 (SulAC161+H) made it labile. Similarly, SulAC161+H fused to maltose-binding protein (MBP–SulAC161+H) formed a tight complex with and was degraded rapidly by Lon in vitro. Histidine competitively inhibited the degradation of MBP–SulA by Lon, while other amino acids did not. These results suggest that the histidine residue at the extreme C-terminus of SulA is recognized specifically by Lon, leading to a high-affinity interaction between SulA and Lon.


1982 ◽  
Vol 2 (7) ◽  
pp. 503-508 ◽  
Author(s):  
Oi Tong Mak ◽  
Hans Jörnvall ◽  
Jonathan Jeffery

The native form of NAD-dependent 15-hydroxyprostaglandin dehydrogenase of human placenta has a mol. wt. of about 50 0002 while the subunit tool. wt. is around 2g 0002 suggesting a dimeric quaternary structure. These propertie% the amino acid composition, insensitivity to EDTA, and inhibition patterns show general similarities to other short-chain dehydrogenases. Several hormones tested did not influence the activity of 15-hydroxyprostaglandin dehydrogenase2 but an unusual activation by two anti-depressant drugs was found and may relate to the existence of a natural regulatory factor.


1995 ◽  
Vol 15 (2) ◽  
pp. 872-882 ◽  
Author(s):  
M K Ernst ◽  
L L Dunn ◽  
N R Rice

In most cells, proteins belonging to the Rel/NF-kappa B family of transcription factors are held in inactive form in the cytoplasm by an inhibitor protein, I kappa B alpha. Stimulation of the cells leads to degradation of the inhibitor and transit of active DNA-binding Rel/NF-kappa B dimers to the nucleus. I kappa B alpha is also able to inhibit DNA binding by Rel/NF-kappa B dimers in vitro, suggesting that it may perform the same function in cells when the activating signal is no longer present. Structurally, the human I kappa B alpha molecule can be divided into three sections: a 70-amino-acid N terminus with no known function, a 205-residue midsection composed of six ankyrin-like repeats, and a very acidic 42-amino-acid C terminus that resembles a PEST sequence. In this study we examined how the structural elements of the I kappa B alpha protein correlate with its functional capabilities both in vitro and in vivo. Using a battery of I kappa B alpha mutants, we show that (i) a dimer binds a single I kappa B alpha molecule, (ii) the acidic C-terminal region of I kappa B alpha is not required for protein-protein binding and does not mask the nuclear localization signal of the dimer, (iii) the same C-terminal region is required for inhibition of DNA binding, and (iv) this inhibition may be accomplished by direct interaction between the PEST-like region and the DNA-binding region of one of the subunits of the dimer.


2018 ◽  
Vol 225 ◽  
pp. 6-16 ◽  
Author(s):  
Xiaole Cui ◽  
Yanhong Ji ◽  
Zhengxiang Wang ◽  
Yingying Du ◽  
Haoran Guo ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Horng H Chen ◽  
Brenda K Huntley ◽  
Candace Y Lee ◽  
Fernando L Martin ◽  
John A Schirger ◽  
...  

BACKGROUND: C-type natriuretic peptide (CNP) is a 22-amino-acid peptide produced mainly in the endothelium with potent cardiac unloading and modest blood pressure lowering actions, but minimal renal actions. Based on our previous knowledge, we recently fused a 6 aa sequence from BNP to the C-terminus and a 5 aa sequence from ANP to the N-terminus of CNP. This novel hybrid peptide, CBA-NP, has cardiac unloading actions and mild hypotensive effects similar to CNP. Importantly however, the N and C terminus alterations resulted in potent renal excretory actions. here we test the hypothesis that the 3 aa GSM 15–17 in the disulfide-ring mediate the vascular and hypotensive actions. We therefore mutated GSM 15–17 to REA 15–17 , which we named ABC-NP and compared its in vivo and in vitro actions to CBA-NP. METHODS: We determined the cardiorenal and humoral actions of intravenous bolus administration of CBA-NP (n=5) and ABC-NP (n=5) at 25 microgram/Kg in 2 separate group of normal anesthetized dogs. We also assessed the cGMP response of both peptides in human aortic endothelial cells (HAEC), human cardiac fibroblast (HCF) and isolated canine glomeruli. * p<0.05 RESULTS: IV bolus administration of CBA-NP and ABC-NP resulted in diuresis* and natriuresis*. There was a significant decrease in mean arterial blood (MAP) pressure with CBA-NP (126±6 to113±7 mmHg*) but no change with ABC-NP(126±8 to126±8 mmHg) . In addition, the reduction in pulmonary capillary wedge pressure (PCWP) and right atrial pressure (RAP) was significantly greater with CBA-NP as compared to ABC-NP. cGMP generation in HAEC and HCF was minimal with ABC-NP and was significantly higher with CBA-NP*. In contrast, cGMP generation was similar in isolated glomeruli between the two peptides. CONCLUSION: Our studies demonstrates that mutation of three amino acid (aa) residues within the CNP ring of CBA-NP from GSM 15–17 to REA alters the vascular but not the renal excretory properties. Hence by this strategic mutation within the ring of CBA-NP, we have designed a renal specific peptide ABC-NP resulting in new sequence specific functional information which can be used to design organ specific therapeutic peptides with unique properties tailored for a specific disease state.


Sign in / Sign up

Export Citation Format

Share Document