scholarly journals Mapping circuit dynamics during function and dysfunction

2021 ◽  
Author(s):  
Srinivas Gorur-Shandilya ◽  
Elizabeth M Cronin ◽  
Anna C Schneider ◽  
Sara Ann Haddad ◽  
Philipp Rosenbaum ◽  
...  

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in C. borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This unsupervised approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamical states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulation, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.

2016 ◽  
Author(s):  
Nitin Gupta ◽  
Swikriti Saran Singh ◽  
Mark Stopfer

AbstractOscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly tested this idea in the locust olfactory system. We found that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we found that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrated that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.


Author(s):  
Samantha Hughes ◽  
Tansu Celikel

From single-cell organisms to complex neural networks, all evolved to provide control solutions to generate context and goal-specific actions. Neural circuits performing sensorimotor computation to drive navigation employ inhibitory control as a gating mechanism, as they hierarchically transform (multi)sensory information into motor actions. Here, we focus on this literature to critically discuss the proposition that prominent inhibitory projections form sensorimotor circuits. After reviewing the neural circuits of navigation across various invertebrate species, we argue that with increased neural circuit complexity and the emergence of parallel computations inhibitory circuits acquire new functions. The contribution of inhibitory neurotransmission for navigation goes beyond shaping the communication that drives motor neurons, instead, include encoding of emergent sensorimotor representations. A mechanistic understanding of the neural circuits performing sensorimotor computations in invertebrates will unravel the minimum circuit requirements driving adaptive navigation.


2018 ◽  
Author(s):  
Dika A. Kuljis ◽  
Khaled Zemoura ◽  
Cheryl A. Telmer ◽  
Jiseok Lee ◽  
Eunsol Park ◽  
...  

AbstractAnatomical methods for determining cell-type specific connectivity are essential to inspire and constrain our understanding of neural circuit function. We developed new genetically-encoded reagents for fluorescence-synapse labeling and connectivity analysis in brain tissue, using a fluorogen-activating protein (FAP)-or YFP-coupled, postsynaptically-localized neuroligin-1 targeting sequence (FAP/YFPpost). Sparse viral expression of FAP/YFPpost with the cell-filling, red fluorophore dTomato (dTom) enabled high-throughput, compartment-specific localization of synapses across diverse neuron types in mouse somatosensory cortex. High-resolution confocal image stacks of virally-transduced neurons were used for 3D reconstructions of postsynaptic cells and automated detection of synaptic puncta. We took advantage of the bright, far-red emission of FAPpost puncta for multichannel fluorescence alignment of dendrites, synapses, and presynaptic neurites to assess subtype-specific inhibitory connectivity onto L2 neocortical pyramidal (Pyr) neurons. Quantitative and compartment-specific comparisons show that PV inputs are the dominant source of inhibition at both the soma and across all dendritic branches examined and were particularly concentrated at the primary apical dendrite, a previously unrecognized compartment of L2 Pyr neurons. Our fluorescence-based synapse labeling reagents will facilitate large-scale and cell-type specific quantitation of changes in synaptic connectivity across development, learning, and disease states.


Author(s):  
Rinat Galiautdinov

The chapter describes the new approach in artificial intelligence based on simulated biological neurons and creation of the neural circuits for the sphere of IoT which represent the next generation of artificial intelligence and IoT. Unlike existing technical devices for implementing a neuron based on classical nodes oriented to binary processing, the proposed path is based on simulation of biological neurons, creation of biologically close neural circuits where every device will implement the function of either a sensor or a “muscle” in the frame of the home-based live AI and IoT. The research demonstrates the developed nervous circuit constructor and its usage in building of the AI (neural circuit) for IoT.


2018 ◽  
Vol 120 (6) ◽  
pp. 2975-2987 ◽  
Author(s):  
Brice Williams ◽  
Anderson Speed ◽  
Bilal Haider

The mouse has become an influential model system for investigating the mammalian nervous system. Technologies in mice enable recording and manipulation of neural circuits during tasks where they respond to sensory stimuli by licking for liquid rewards. Precise monitoring of licking during these tasks provides an accessible metric of sensory-motor processing, particularly when combined with simultaneous neural recordings. There are several challenges in designing and implementing lick detectors during head-fixed neurophysiological experiments in mice. First, mice are small, and licking behaviors are easily perturbed or biased by large sensors. Second, neural recordings during licking are highly sensitive to electrical contact artifacts. Third, submillisecond lick detection latencies are required to generate control signals that manipulate neural activity at appropriate time scales. Here we designed, characterized, and implemented a contactless dual-port device that precisely measures directional licking in head-fixed mice performing visual behavior. We first determined the optimal characteristics of our detector through design iteration and then quantified device performance under ideal conditions. We then tested performance during head-fixed mouse behavior with simultaneous neural recordings in vivo. We finally demonstrate our device’s ability to detect directional licks and generate appropriate control signals in real time to rapidly suppress licking behavior via closed-loop inhibition of neural activity. Our dual-port detector is cost effective and easily replicable, and it should enable a wide variety of applications probing the neural circuit basis of sensory perception, motor action, and learning in normal and transgenic mouse models. NEW & NOTEWORTHY Mice readily learn tasks in which they respond to sensory cues by licking for liquid rewards; tasks that involve multiple licking responses allow study of neural circuits underlying decision making and sensory-motor integration. Here we design, characterize, and implement a novel dual-port lick detector that precisely measures directional licking in head-fixed mice performing visual behavior, enabling simultaneous neural recording and closed-loop manipulation of licking.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw9305 ◽  
Author(s):  
Kasper van der Vaart ◽  
Michael Sinhuber ◽  
Andrew M. Reynolds ◽  
Nicholas T. Ouellette

Social animals routinely form groups, which are thought to display emergent, collective behavior. This hypothesis suggests that animal groups should have properties at the group scale that are not directly linked to the individuals, much as bulk materials have properties distinct from those of their constituent atoms. Materials are often probed by measuring their response to controlled perturbations, but these experiments are difficult to conduct on animal groups, particularly in the wild. Here, we show that laboratory midge swarms have emergent continuum mechanical properties, displaying a collective viscoelastic response to applied oscillatory visual stimuli that allows us to extract storage and loss moduli for the swarm. We find that the swarms strongly damp perturbations, both viscously and inertially. Thus, unlike bird flocks, which appear to use collective behavior to promote lossless information flow through the group, our results suggest that midge swarms use it to stabilize themselves against environmental perturbations.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160258 ◽  
Author(s):  
Gina G. Turrigiano

It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally distinct forms of plasticity compliment (and under some circumstances interfere with) each other remains rudimentary. Here, I describe some of the recent progress of the field, as well as some of the deep puzzles that remain. These include unravelling the spatial and temporal scales of different homeostatic and Hebbian mechanisms, determining which aspects of network function are under homeostatic control, and understanding when and how homeostatic and Hebbian mechanisms must be segregated within neural circuits to prevent interference. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


2018 ◽  
Vol 120 (2) ◽  
pp. 854-866 ◽  
Author(s):  
Sarah E. V. Richards ◽  
Stephen D. Van Hooser

Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Shu ◽  
Tonghui Xu

Chronic stress is associated with occurrence of many mental disorders. Previous studies have shown that dendrites and spines of pyramidal neurons of the prefrontal cortex undergo drastic reorganization following chronic stress experience. So the prefrontal cortex is believed to play a key role in response of neural system to chronic stress. However, how stress induces dynamic structural changes in neural circuit of prefrontal cortex remains unknown. In the present study, we examined the effects of chronic social defeat stress on dendritic spine structural plasticity in the mouse frontal association (FrA) cortexin vivousing two-photon microscopy. We found that chronic stress altered spine dynamics in FrA and increased the connectivity in FrA neural circuits. We also found that the changes in spine dynamics in FrA are correlated with the deficit of sucrose preference in defeated mice. Our findings suggest that chronic stress experience leads to adaptive change in neural circuits that may be important for encoding stress experience related memory and anhedonia.


Sign in / Sign up

Export Citation Format

Share Document