scholarly journals Soil conditions drive belowground trait space in temperate agricultural grasslands

2021 ◽  
Author(s):  
Tom Pierre-Andre Lachaise ◽  
Joana Bergmann ◽  
Norbert Hoelzel ◽  
Valentin Klaus ◽  
Till Kleinebecker ◽  
...  

1. Plant belowground organs perform essential functions, including water and nutrient uptake, anchorage, vegetative reproduction and recruitment of mutualistic soil microbiota. Determining how belowground traits jointly determine dimensions of the trait space and how these dimensions are linked to environmental conditions would further advance our understanding of plant functioning and community assembly. 2. Here, we investigated belowground plant-trait dimensionality and its variation along 10 soil and land-use parameters in 150 temperate grasslands plots. We used eight belowground traits collected in greenhouse and common garden experiments, as well as bud-bank size and specific leaf area from databases, for a total of 313 species, to calculate community weighted means (CWMs). 3. Using PCA, we found that about 55% of variance in CWMs was explained by two main dimensions, corresponding to a mycorrhizal "collaboration" and a resource "conservation" gradient. Frequently overlooked traits such as rooting depth, bud-bank size and root branching intensity were largely integrated in this bidimensional trait space. The two plant-strategy gradients were partially dependent on each other, with outsourcing communities along the "collaboration" gradient being more often "slow". These "outsourcing" communities were also more often deep-rooting, and associated with soil parameters, such as low moisture and sand content, high topsoil pH, high C:N and low 15N. "Slow" communities had large bud-banks and were associated with low land-use intensity, high topsoil pH, and low nitrate but high ammonium concentrations in the soil. We did not find a substantial role of phosphorus-availability as an indicator along the "collaboration" gradient. 4. In conclusion, the "collaboration" and "conservation" gradients previously identified at the species level scale up to community level in grasslands, encompass more traits than previously described, and vary with the environment.

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Weldemariam Seifu ◽  
Eyasu Elias ◽  
Girmay Gebresamuel

Understanding topography effects and assessing the soil properties in different land use is an essential first step for sustainable soil management. Hence, land use type and altitudinal gradient on selected soil parameters were studied in Ayiba watershed, northern Ethiopia. Thirty composite soil samples were collected from 0 to 30 cm of soil depth under four land use types across three altitudinal gradients and were analyzed for selected soil parameters following the standard procedures. A significant main effect of land use and altitudinal gradient on the content of the soil particles was noted. Results also indicated that the bulk density (BD), total porosity (TP), and Pav of the soil are significantly different ( p  < 0.05) in the watershed because of land use type and altitudinal gradient. Barren land and higher altitude landscapes have the highest BD, and the lowest TP, and grassland and lower altitude landscapes have the lowest BD and high TP. Intensive cultivation accompanied by natural land conversion and erosion due to the rugged landscape nature caused high BD and low TP. Analysis of variance results also shows the significant interaction effect of land use type and altitudinal gradient on EC, SOM, SOC ( p  < 0.001), and pH-water (1:2.5), and TN ( p  < 0.01). The Pearson correlation of SOM with TP, TN, MC, and clay content showed a strong positive relationship. But, SOC, TN, and clay content were negatively correlated with BD. Soils of the study watershed are found in low to optimum rating levels in their selected physicochemical properties. Overall, the results show that land use and topography gradient significantly affected soil physicochemical properties in the study watershed. Therefore, soil management options should focus on scenarios that could improve the soil conditions to enhance crop production on a sustainable basis.


2021 ◽  
Author(s):  
Anna Kirschbaum ◽  
Oliver Bossdorf ◽  
J F Scheepens

Abstract Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing, mowing and fertilization. Many previous studies showed that this can cause evolutionary changes in mean trait values, but little is known about the evolution of phenotypic plasticity in response to land use. In this study, we aimed to elucidate the relationships between phenotypic plasticity – specifically, regrowth ability after biomass removal – and the intensity of grassland management and levels of temporal variation therein. Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal. We used three common plant species from temperate European grasslands, with seed material from 58 – 68 populations along gradients of land-use intensity, ranging from extensive (only light grazing) to very intensive management (up to four cuts per year). Important findings In two out of three species, we found significant population differentiation in regrowth ability after clipping. While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin, we found a relationship with its temporal variation in P. lanceolata, where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping. Therefore, while mean grazing and mowing intensity may not select for regrowth ability, the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


2015 ◽  
Vol 19 (3) ◽  
pp. 1193-1207 ◽  
Author(s):  
S. Siltecho ◽  
C. Hammecker ◽  
V. Sriboonlue ◽  
C. Clermont-Dauphin ◽  
V. Trelo-ges ◽  
...  

Abstract. Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land uses and to compare the results obtained with different measurement methods (Beerkan, disc infiltrometer, evaporation, pedotransfer function). The study has been realized on a tropical sandy soil in a mini-watershed in northeastern Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non-parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n) were significantly different according to the measurement methods employed, whereas the land use was not a significant discriminating factor when all methods were considered together. However, within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a 1-year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modeling, any of these measurement methods could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


1978 ◽  
Vol 58 (4) ◽  
pp. 961-969 ◽  
Author(s):  
D. H. WEBSTER

Within orchards or groups of similar samples, the abundance of apple roots [Formula: see text] diameter was related to total soil porosity (Sta). Below a boundary soil porosity, roots were sparse or absent, and above this porosity, maximum root abundance tended to increase with increase in soil porosity. Depending upon soil texture, this boundary porosity varied from 29 to 39%. A previously derived model, which estimates boundary soil porosity (Stc) as a function of texture, accounted for most of these differences. If the model was correct, all boundary Sta – Stc values should have been zero and in four of six groups of samples the derived values were zero, + 1 or − 1. The greater departures from the expected in the remaining two groups (− 2 and + 4) may have been due to a tolerance of M. 12 rootstock to poor aeration and incomplete exploitation of potential rooting depth, respectively. With the exception of M. 12, apple roots were sparse or absent in samples with less than 10% air porosity at a tension of 100 cm (S100 cm). Poor development of roots in these samples was predicted by the model. In many samples with S100 cm > 10% there were few or no roots. Soil strength of many samples was within the range known to interfere with root development. For the purpose of recognizing a soil condition that will prevent apple root growth, Sta – Stc appears to be superior to the other criteria examined, i.e. Sta, S100 cm or soil strength.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1026
Author(s):  
Juan Pablo Renzi ◽  
Jan Brus ◽  
Stergios Pirintsos ◽  
László Erdős ◽  
Martin Duchoslav ◽  
...  

Medicago truncatula (barrel medic) and Pisum sativum subsp. elatius (wild pea) accessions originating from variable environmental conditions in the Mediterranean basin were used to study physical seed dormancy (PY) release. The effect of soil burial on PY release was tested on 112 accessions of medic and 46 accessions of pea over the period of 3 months in situ at three common gardens (Hungary, Spain and Greece) from 2017 through 2019. PY release after soil exhumation followed by experimental laboratory germination of remaining dormant seeds (wet, 25 °C, 21 days) were related to the environmental conditions of the common garden and macroclimatic variables of the site of origin of the accessions. Higher PY release was observed in buried seeds under humid rather than under dry and hot environments. Exposure of remaining dormant seeds to experimental laboratory conditions increased total PY release up to 70% and 80% in barrel medic and wild pea, respectively. Wild pea showed higher phenotypic plasticity on PY release than barrel medic, which had higher bet-hedging within-season. Wild pea showed lower bet-hedging among-season (PY < 10%) in relation to precipitation than barrel medic, which was more conservative (PY ≈ 20%). Observed variability suggests that these species have the capability to cope with ongoing climate change.


2020 ◽  
Vol 12 (23) ◽  
pp. 10134
Author(s):  
Shouqiang Yin ◽  
Jing Li ◽  
Jiaxin Liang ◽  
Kejing Jia ◽  
Zhen Yang ◽  
...  

This study was aimed at optimizing the weighted linear combination method (WLC) for agricultural land suitability evaluation (ALSE) through indicator selection, weight determination, and classification of overall suitability scores in Handan, China. Handan is a representative research area with distinct agricultural advantages and regional differences in land use, where the expansion of construction land has led to a rapid decrease of agricultural land in recent years. Natural factors (topography, climate, soil conditions, and vegetation cover) and socioeconomic factors (land use and spatial accessibility) were selected to establish a more comprehensive evaluation system. The index weight was calculated by the mutual information between index suitability and current land use. The consistency index was used to identify the boundary value dividing the overall suitability score into a suitable category and unsuitable category in each sub-region. The results demonstrated that the optimized WLC-ALSE model outperformed the comparison models using conventional methods in terms of the consistency between the evaluation results and current land use. Owing to the increasing limitations of topography, soil conditions, spatial accessibility, and land use, the proportions of suitable land in Zone 1, Zone 2, and Zone 3 were 77.4%, 67.5%, and 30.9%, respectively. The agricultural land unsuitable for agriculture (14.5%) was less than non-agricultural land suitable for agriculture (7.4%), indicating that agricultural land had low growth potential in Handan. Finally, specific recommendations were made to improve agricultural land suitability, alleviate land use conflicts, and further optimize the model. The results can provide effective guidance for WLC-ALSE and land use decision-making for sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document