scholarly journals Dissociable Multi-scale Patterns of Development in Personalized Brain Networks

2021 ◽  
Author(s):  
Adam R Pines ◽  
Bart Larsen ◽  
Zaixu Cui ◽  
Valerie J Sydnor ◽  
Maxwell A Bertolero ◽  
...  

The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derived personalized functional networks across 29 scales in a large sample of youths (n=693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling systematically adhered to and strengthened a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks dissociably mediated the emergence of executive function. These results delineate maturation of multi-scale brain networks, which varies according to a functional hierarchy and impacts cognitive development.

2020 ◽  
Author(s):  
Pesoli Matteo ◽  
Rucco Rosaria ◽  
Liparoti Marianna ◽  
Lardone Anna ◽  
D’Aurizio Giula ◽  
...  

AbstractThe topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks.


2019 ◽  
Author(s):  
Cedric Huchuan Xia ◽  
Zongming Ma ◽  
Zaixu Cui ◽  
Danilo Bzdok ◽  
Danielle S. Bassett ◽  
...  

AbstractComplex brain networks are increasingly characterized at different scales, including global summary statistics, community connectivity, and individual edges. While research relating brain networks to demographic and behavioral measurements has yielded many insights into brain-phenotype relationships, common analytical approaches only consider network information at a single scale, thus failing to incorporate rich information present at other scales. Here, we designed, implemented, and deployed Multi-Scale Network Regression (MSNR), a penalized multivariate approach for modeling brain networks that explicitly respects both edge- and community-level information by assuming a low rank and sparse structure, both encouraging less complex and more interpretable modeling. Capitalizing on a large neuroimaging cohort (n = 1, 051), we demonstrate that MSNR recapitulates interpretable and statistically significant association between functional connectivity patterns with brain development, sex differences, and motion-related artifacts. Notably, compared to single-scale methods, MSNR achieves a balance between prediction performance and model complexity, with improved interpretability. Together, by jointly exploiting both edge- and community-level information, MSNR has the potential to yield novel insights into brain-behavior relationships.


2016 ◽  
Vol 27 (7) ◽  
pp. 713-727 ◽  
Author(s):  
John S.Y. Chan ◽  
Yifeng Wang ◽  
Jin H. Yan ◽  
Huafu Chen

AbstractThe human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children’s brains. We first focused on the general rules of brain network development and on the typical and atypical development of children’s brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.


2011 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
Christy L. Ludlow

The premise of this article is that increased understanding of the brain bases for normal speech and voice behavior will provide a sound foundation for developing therapeutic approaches to establish or re-establish these functions. The neural substrates involved in speech/voice behaviors, the types of muscle patterning for speech and voice, the brain networks involved and their regulation, and how they can be externally modulated for improving function will be addressed.


Author(s):  
Aleksandr E. Hramov ◽  
Nikita S. Frolov ◽  
Vladimir A. Maksimenko ◽  
Semen A. Kurkin ◽  
Viktor B. Kazantsev ◽  
...  

Author(s):  
Aleksandr E. Hramov ◽  
Nikita S. Frolov ◽  
Vladimir A. Maksimenko ◽  
Semen A. Kurkin ◽  
Viktor B. Kazantsev ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Camille Fauchon ◽  
David Meunier ◽  
Isabelle Faillenot ◽  
Florence B Pomares ◽  
Hélène Bastuji ◽  
...  

Abstract Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Wei Lin ◽  
Yu Hong ◽  
Jinfu Liu

Abstract Background Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diagnosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the computer-assisted diagnosis for the brain tumor diagnosis is still the problem because the rough segmentation of the brain tumor makes the internal grade of the tumor incorrect. Methods In this paper, we proposed an Aggregation-and-Attention Network for brain tumor segmentation. The proposed network takes the U-Net as the backbone, aggregates multi-scale semantic information, and focuses on crucial information to perform brain tumor segmentation. To this end, we proposed an enhanced down-sampling module and Up-Sampling Layer to compensate for the information loss. The multi-scale connection module is to construct the multi-receptive semantic fusion between encoder and decoder. Furthermore, we designed a dual-attention fusion module that can extract and enhance the spatial relationship of magnetic resonance imaging and applied the strategy of deep supervision in different parts of the proposed network. Results Experimental results show that the performance of the proposed framework is the best on the BraTS2020 dataset, compared with the-state-of-art networks. The performance of the proposed framework surpasses all the comparison networks, and its average accuracies of the four indexes are 0.860, 0.885, 0.932, and 1.2325, respectively. Conclusions The framework and modules of the proposed framework are scientific and practical, which can extract and aggregate useful semantic information and enhance the ability of glioma segmentation.


2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


Sign in / Sign up

Export Citation Format

Share Document