Developmental implications of children’s brain networks and learning

2016 ◽  
Vol 27 (7) ◽  
pp. 713-727 ◽  
Author(s):  
John S.Y. Chan ◽  
Yifeng Wang ◽  
Jin H. Yan ◽  
Huafu Chen

AbstractThe human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children’s brains. We first focused on the general rules of brain network development and on the typical and atypical development of children’s brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.

2019 ◽  
Vol 3 (2) ◽  
pp. 539-550 ◽  
Author(s):  
Véronique Paban ◽  
Julien Modolo ◽  
Ahmad Mheich ◽  
Mahmoud Hassan

We aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience. To tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-item Connor-Davidson Resilience Scale (CD-RISC). By using a sliding windows approach, brain networks in each EEG frequency band (delta, theta, alpha, and beta) were constructed using the EEG source-space connectivity method. Brain networks dynamics were evaluated using the network flexibility, linked with the tendency of a given node to change its modular affiliation over time. The results revealed a negative correlation between the psychological resilience and the brain network flexibility for a limited number of brain regions within the delta, alpha, and beta bands. This study provides evidence that network flexibility, a metric of dynamic functional networks, is strongly correlated with psychological resilience as assessed from personality testing. Beyond this proof-of-principle that reliable EEG-based quantities representative of personality traits can be identified, this motivates further investigation regarding the full spectrum of personality aspects and their relationship with functional networks.


2020 ◽  
Author(s):  
Pesoli Matteo ◽  
Rucco Rosaria ◽  
Liparoti Marianna ◽  
Lardone Anna ◽  
D’Aurizio Giula ◽  
...  

AbstractThe topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks.


2021 ◽  
Author(s):  
Adam R Pines ◽  
Bart Larsen ◽  
Zaixu Cui ◽  
Valerie J Sydnor ◽  
Maxwell A Bertolero ◽  
...  

The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derived personalized functional networks across 29 scales in a large sample of youths (n=693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling systematically adhered to and strengthened a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks dissociably mediated the emergence of executive function. These results delineate maturation of multi-scale brain networks, which varies according to a functional hierarchy and impacts cognitive development.


2018 ◽  
Author(s):  
Veronique Paban ◽  
Julien Modolo ◽  
Ahmad Mheich ◽  
Mahmoud Hassan

AbstractObjectiveWe aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience.ApproachTo tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-items Connor-Davidson Resilience Scale (CD-RISC). Using a sliding windows approach, brain networks in each EEG frequency band (delta, theta, alpha and beta) were constructed using the EEG source-space connectivity method. Brain networks dynamics were evaluated using the network flexibility, linked with the tendency of a given node to change its modular affiliation over time.Main ResultsThe results revealed a negative correlation between the psychological resilience and the brain network flexibility for a limited number of brain regions within the delta, alpha and beta bands.SignificanceThis study provides evidence that network flexibility, a metric of dynamic functional networks, is strongly correlated with psychological resilience as assessed from personality testing. Beyond this proof-of-principle that reliable EEG-based quantities representative of personality traits can be identified, this motivates further investigation regarding the full spectrum of personality aspects and their relationship with functional networks.


2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.


2021 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Zhuoyuan Li ◽  
Xueyan Jiang ◽  
Wenying Du ◽  
Xiaoqi Wang ◽  
...  

Background: Evidence suggests that subjective cognitive decline (SCD) individuals with worry have a higher risk of cognitive decline. However, how SCD-related worry influences the functional brain network is still unknown. Objective: In this study, we aimed to explore the differences in functional brain networks between SCD subjects with and without worry. Methods: A total of 228 participants were enrolled from the Sino Longitudinal Study on Cognitive Decline (SILCODE), including 39 normal control (NC) subjects, 117 SCD subjects with worry, and 72 SCD subjects without worry. All subjects completed neuropsychological assessments, APOE genotyping, and resting-state functional magnetic resonance imaging (rs-fMRI). Graph theory was applied for functional brain network analysis based on both the whole brain and default mode network (DMN). Parameters including the clustering coefficient, shortest path length, local efficiency, and global efficiency were calculated. Two-sample T-tests and chi-square tests were used to analyze differences between two groups. In addition, a false discovery rate-corrected post hoc test was applied. Results: Our analysis showed that compared to the SCD without worry group, SCD with worry group had significantly increased functional connectivity and shortest path length (p = 0.002) and a decreased clustering coefficient (p = 0.013), global efficiency (p = 0.001), and local efficiency (p <  0.001). The above results appeared in both the whole brain and DMN. Conclusion: There were significant differences in functional brain networks between SCD individuals with and without worry. We speculated that worry might result in alterations of the functional brain network for SCD individuals and then result in a higher risk of cognitive decline.


2021 ◽  
Author(s):  
Lukman Ismael ◽  
Pejman Rasti ◽  
Florian Bernard ◽  
Philippe Menei ◽  
Aram Ter Minassian ◽  
...  

BACKGROUND The functional MRI (fMRI) is an essential tool for the presurgical planning of brain tumor removal, allowing the identification of functional brain networks in order to preserve the patient’s neurological functions. One fMRI technique used to identify the functional brain network is the resting-state-fMRI (rsfMRI). However, this technique is not routinely used because of the necessity to have a expert reviewer to identify manually each functional networks. OBJECTIVE We aimed to automatize the detection of brain functional networks in rsfMRI data using deep learning and machine learning algorithms METHODS We used the rsfMRI data of 82 healthy patients to test the diagnostic performance of our proposed end-to-end deep learning model to the reference functional networks identified manually by 2 expert reviewers. RESULTS Experiment results show the best performance of 86% correct recognition rate obtained from the proposed deep learning architecture which shows its superiority over other machine learning algorithms that were equally tested for this classification task. CONCLUSIONS The proposed end-to-end deep learning model was the most performant machine learning algorithm. The use of this model to automatize the functional networks detection in rsfMRI may allow to broaden the use of the rsfMRI, allowing the presurgical identification of these networks and thus help to preserve the patient’s neurological status. CLINICALTRIAL Comité de protection des personnes Ouest II, decision reference CPP 2012-25)


Sign in / Sign up

Export Citation Format

Share Document