scholarly journals Electron Cryo-Tomography Structure of Axonemal Doublet Microtubule from Tetrahymena thermophila

2021 ◽  
Author(s):  
Sam Li ◽  
Jose-Jesus Fernandez ◽  
Amy S Fabritius ◽  
David Agard ◽  
Mark Winey

Doublet microtubules (DMT) provide a scaffold for axoneme assembly in motile cilia. Aside from α/β tubulins, the DMT comprises a large number of non-tubulin proteins in the luminal wall of DMT, collectively named the microtubule inner proteins (MIPs). We used electron cryo-tomography to study axoneme DMT isolated from Tetrahymena thermophila. We present the structures of DMT at nanometer and sub-nanometer resolution. The structures confirm that MIP Rib72A/B binds to the luminal wall of the DMT by multiple DM10 domains, likely by recognizing the acetylated K40 residue of α-tubulin. We found Fap115, a MIP containing multiple EF-hand domains, located at the interface of four-tubulin dimers in the lumen of the A-tubule. It functions as a "molecular staple" stabilizing both lateral and longitudinal tubulin interfaces and playing a critical role in DMT stability. Defects caused by the depletion of Fap115 propagate along the axoneme due to extensive structural changes in the DMT at and beyond the Fap115 binding site. Finally, by comparing DMT structures from Tetrahymena and Chlamydomonas, we have identified a number of conserved MIPs as well as MIPs that are unique to each organism. This conservation and diversity of the DMT structures might be linked to their specific functions. Our work provides structural insights essential for understanding the roles of MIPs during motile cilium assembly and function, as well as their relationships to human ciliopathies.

2021 ◽  
Vol 5 (3) ◽  
pp. e202101225
Author(s):  
Sam Li ◽  
Jose-Jesus Fernandez ◽  
Amy S Fabritius ◽  
David A Agard ◽  
Mark Winey

Doublet microtubules (DMTs) provide a scaffold for axoneme assembly in motile cilia. Aside from α/β tubulins, the DMT comprises a large number of non-tubulin proteins in the luminal wall of DMTs, collectively named the microtubule inner proteins (MIPs). We used cryoET to study axoneme DMT isolated from Tetrahymena. We present the structures of DMT at nanometer and sub-nanometer resolution. The structures confirm that MIP RIB72A/B binds to the luminal wall of DMT by multiple DM10 domains. We found FAP115, an MIP-containing multiple EF-hand domains, located at the interface of four-tubulin dimers in the lumen of A-tubule. It contacts both lateral and longitudinal tubulin interfaces and playing a critical role in DMT stability. We observed substantial structure heterogeneity in DMT in an FAP115 knockout strain, showing extensive structural defects beyond the FAP115-binding site. The defects propagate along the axoneme. Finally, by comparing DMT structures from Tetrahymena and Chlamydomonas, we have identified a number of conserved MIPs as well as MIPs that are unique to each organism. This conservation and diversity of the DMT structures might be linked to their specific functions. Our work provides structural insights essential for understanding the roles of MIPs during motile cilium assembly and function, as well as their relationships to human ciliopathies.


2020 ◽  
Author(s):  
Ju Yang ◽  
Nicola Mandriota ◽  
Steven Glenn Harrellson ◽  
John Anthony Jones-Molina ◽  
Rafael Yuste ◽  
...  

AbstractSynapses play a critical role in neural circuits, and they are potential sites for learning and memory. Maintenance of synaptic adhesion is critical for neural circuit function, however, biophysical mechanisms that help maintain synaptic adhesion are not clear. Studies with various cell types demonstrated the important role of stiffness in cellular adhesions. Although synaptic stiffness could also play a role in synaptic adhesion, stiffnesses of synapses are difficult to characterize due to their small size and challenges in verifying synapse identity and function. To address these challenges, we have developed an experimental platform that combines atomic force microscopy, fluorescence microscopy, and transmission electron microscopy. Here, using this platform, we report that functional, mature, excitatory synapses had an average elastic modulus of approximately 200 kPa, two orders of magnitude larger than that of the brain tissue, suggesting stiffness might have a role in synapse function. Similar to various functional and anatomical features of neural circuits, synaptic stiffness had a lognormal-like distribution, hinting a possible regulation of stiffness by processes involved in neural circuit function. In further support of this possibility, we observed that synaptic stiffness was correlated with spine size, a quantity known to correlate with synaptic strength. Using established stages of the long-term potentiation timeline and theoretical models of adhesion cluster dynamics, we developed a biophysical model of the synapse that not only explains extreme stiffness of synapses, their statistical distribution, and correlation with spine size, but also offers an explanation to how early biomolecular and structural changes during functional potentiation could lead to strengthening of synaptic adhesion. According to this model, synaptic stiffness serves as an indispensable physical messenger, feeding information back to synaptic adhesion molecules to facilitate maintenance of synaptic adhesion.


2006 ◽  
Vol 87 (3) ◽  
pp. 657-664 ◽  
Author(s):  
John West ◽  
Dennis T. Brown

Envelopment of Sindbis virus (SV) at the plasma membrane begins with the interaction of the E2 glycoprotein endodomain with a hydrophobic cleft in the surface of the pre-assembled nucleocapsid. The driving force for this budding event is thought to reside in this virus type-specific association at the surface of the cell. The specific amino acids involved in this interaction have not been identified; however, it has been proposed that a conserved motif (TPY) at aa 398–400 in the E2 tail plays a critical role in this interaction. This interaction has been examined with virus containing mutations at two positions in this conserved domain, T398A and Y400N. The viruses produced have very low infectivity (as determined by particle : p.f.u. ratios); however, there appears to be no defect in assembly, as the virus has wild-type density and electron microscopy shows assembled particles with no obvious aberrant structural changes. The loss of infectivity in the double mutant is accompanied by the loss of the ability to fuse cells after brief exposure to acid pH. These data support the idea that these residues are vital for production of infectious/functional virus; however, they are dispensable for assembly. These results, combined with other published observations, expand our understanding of the interaction of the E2 endodomain with the capsid protein.


2018 ◽  
Vol 115 (45) ◽  
pp. E10556-E10565 ◽  
Author(s):  
Kaiqian Wang ◽  
Christian Holt ◽  
Jocelyn Lu ◽  
Malene Brohus ◽  
Kamilla Taunsig Larsen ◽  
...  

Calmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in theCALMgenes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca2+by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca2+-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca2+-dependent inactivation of the voltage-gated calcium channel.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yan Wang ◽  
Yan Han ◽  
Ji She ◽  
Nam X Nguyen ◽  
Vamsi K Mootha ◽  
...  

Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+-dependent manner. Here, we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.


Author(s):  
M.J. Witcomb ◽  
M.A. O'Keefe ◽  
CJ. Echer ◽  
C. Nelson ◽  
J.H. Turner ◽  
...  

Under normal circumstances, Pt dissolves only a very small amount of interstitial carbon in solid solution. Even so, an appropriate quench/age treatment leads to the formation of stable Pt2C {100} plate precipitates. Excess (quenched-in) vacancies play a critical role in the process by accommodating the volume and structural changes that accompany the transformation. This alloy system exhibits other interesting properties. Due to a large vacancy/carbon atom binding energy, Pt can absorb excess carbon at high temperatures in a carburizing atmosphere. In regions rich in carbon and vacancies, another carbide phase, Pt7C which undergoes an order-disorder reaction was formed. The present study of Pt carburized at 1160°C and aged at 515°C shows that other carbides in the PtxC series can be produced.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


2020 ◽  
Vol 27 (3) ◽  
pp. 201-209
Author(s):  
Syed Saqib Ali ◽  
Mohammad Khalid Zia ◽  
Tooba Siddiqui ◽  
Haseeb Ahsan ◽  
Fahim Halim Khan

Background: Ascorbic acid is a classic dietary antioxidant which plays an important role in the body of human beings. It is commonly found in various foods as well as taken as dietary supplement. Objective: The plasma ascorbic acid concentration may range from low, as in chronic or acute oxidative stress to high if delivered intravenously during cancer treatment. Sheep alpha-2- macroglobulin (α2M), a human α2M homologue is a large tetrameric glycoprotein of 630 kDa with antiproteinase activity, found in sheep’s blood. Methods: In the present study, the interaction of ascorbic acid with alpha-2-macroglobulin was explored in the presence of visible light by utilizing various spectroscopic techniques and isothermal titration calorimetry (ITC). Results: UV-vis and fluorescence spectroscopy suggests the formation of a complex between ascorbic acid and α2M apparent by increased absorbance and decreased fluorescence. Secondary structural changes in the α2M were investigated by CD and FT-IR spectroscopy. Our findings suggest the induction of subtle conformational changes in α2M induced by ascorbic acid. Thermodynamics signatures of ascorbic acid and α2M interaction indicate that the binding is an enthalpy-driven process. Conclusion: It is possible that ascorbic acid binds and compromises antiproteinase activity of α2M by inducing changes in the secondary structure of the protein.


Sign in / Sign up

Export Citation Format

Share Document