scholarly journals Gene-Specific Nonsense-Mediated mRNA Decay Targeting for Cystic Fibrosis Therapy

2021 ◽  
Author(s):  
Young Jin Kim ◽  
Tomoki Nomakuchi ◽  
Foteini Papaleonidopoulou ◽  
Adrian R. Krainer

Low CFTR mRNA expression due to nonsense-mediated mRNA decay (NMD) is a major hurdle in developing a therapy for cystic fibrosis (CF) caused by the W1282X mutation in the CFTR gene. CFTR-W1282X truncated protein retains partial function, so increasing its levels by inhibiting NMD of its mRNA will likely be beneficial. Because NMD regulates the normal expression of many genes, gene-specific stabilization of CFTR-W1282X mRNA expression is more desirable than general NMD inhibition. Synthetic antisense oligonucleotides (ASOs) designed to prevent binding of exon junction complexes (EJC) downstream of premature termination codons (PTCs) attenuate NMD in a gene-specific manner. We developed a cocktail of three ASOs that specifically increases the expression of CFTR W1282X mRNA and CFTR protein in ASO-transfected human bronchial epithelial cells. This treatment increased the CFTR-mediated chloride current. These results set the stage for clinical development of an allele-specific therapy for CF caused by the W1282X mutation.

2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


1992 ◽  
Vol 263 (6) ◽  
pp. C1147-C1151 ◽  
Author(s):  
R. D. Krauss ◽  
G. Berta ◽  
T. A. Rado ◽  
J. K. Bubien

Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed at low levels in nonepithelial cells. Recently, we demonstrated that CFTR is responsible for cell cycle-dependent adenosine 3',5'-cyclic monophosphate-responsive Cl- permeability in lymphocytes. Agonist responsiveness of cystic fibrosis (CF) lymphocytes was restored by transfection with plasmid containing wild type CFTR cDNA. CFTR mRNA is expressed in the B lymphoid cell line GM03299; however, quantitative reverse transcriptase-polymerase chain reaction indicates that the level of CFTR mRNA is at least 1,000 times lower than in T84 cells. CFTR protein could not be detected by Western blot or by immunoprecipitation of in vitro phosphorylated protein. However, antisense oligonucleotides representing codons 1-12 of CFTR caused a complete inhibition of cell cycle-dependent Cl-permeability [as determined by 6-methoxy-N-(3-sulfopropyl)-quinolinium fluorescence digital-imaging microscopy], thereby inducing normal cells to acquire a "CF phenotype." These studies provide direct evidence that a CFTR-associated Cl- permeability is present and measurable in lymphocytes, even though CFTR mRNA and protein are expressed at low levels.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Lucia Micale ◽  
Lucia Anna Muscarella ◽  
Marco Marzulli ◽  
Bartolomeo Augello ◽  
Patrizia Tritto ◽  
...  

There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD), a process that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in theVHLgene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating theDrosophilaUAS:Upf1D45Bline we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 ofVhlgene. Further, by Quantitative Real-time PCR (QPCR) we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1D45Bline represents a useful system to identify novel substrates of NMD pathway inDrosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation ofVHLmutations.


Author(s):  
Jean-Marie Lambert ◽  
Mohamad Omar Ashi ◽  
Nivine Srour ◽  
Laurent Delpy ◽  
Jérôme Saulière

The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Therefore, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we will describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphoid cells.


2021 ◽  
Author(s):  
Nathaniel J. Henning ◽  
Lydia Boike ◽  
Jessica N. Spradlin ◽  
Carl C. Ward ◽  
Bridget Belcher ◽  
...  

AbstractTargeted protein degradation is a powerful therapeutic modality that uses heterobifunctional small-molecules to induce proximity between E3 ubiquitin ligases and target proteins to ubiquitinate and degrade specific proteins of interest. However, many proteins are ubiquitinated and degraded to drive disease pathology; in these cases targeted protein stabilization (TPS), rather than degradation, of the actively degraded target using a small-molecule would be therapeutically beneficial. Here, we present the Deubiquitinase-Targeting Chimera (DUBTAC) platform for TPS of specific proteins. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48 ubiquitin-specific deubiquitinase OTUB1. We then developed a heterobifunctional DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-CFTR. We demonstrated proof-of-concept of TPS by showing that this DUBTAC robustly stabilized ΔF508-CFTR in human cystic fibrosis bronchial epithelial cells in an OTUB1-dependent manner. Our study underscores the utility of chemoproteomics-enabled covalent ligand discovery approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.Editorial summaryWe have developed the Deubiquitinase Targeting Chimera (DUBTAC) platform for targeted protein stabilization. We have discovered a covalent recruiter against the deubiquitinase OTUB1 that we have linked to the mutant ΔF508-CFTR targeting cystic fibrosis drug Lumacaftor to stabilize mutant CFTR protein in cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Claire Guissart ◽  
Kevin Mouzat ◽  
Jovana Kantar ◽  
Baptiste Louveau ◽  
Paul Vilquin ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is the most common and severe adult-onset motoneuron disease and has currently no effective therapy. Approximately 20% of familial ALS cases are caused by dominantly-inherited mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), which represents one of the most frequent genetic cause of ALS. Despite the overwhelming majority of ALS-causing missense mutations in SOD1, a minority of premature termination codons (PTCs) have been identified. mRNA harboring PTCs are known to be rapidly degraded by nonsense-mediated mRNA decay (NMD), which limits the production of truncated proteins. The rules of NMD surveillance varying with PTC location in mRNA, we analyzed the localization of PTCs in SOD1 mRNA to evaluate whether or not those PTCs can be triggered to degradation by the NMD pathway. Our study shows that all pathogenic PTCs described in SOD1 so far can theoretically escape the NMD, resulting in the production of truncated protein. This finding supports the hypothesis that haploinsufficiency is not an underlying mechanism of SOD1 mutant-associated ALS and suggests that PTCs found in the regions that trigger NMD are not pathogenic. Such a consideration is particularly important since the availability of SOD1 antisense strategies, in view of variant treatment assignment.


2020 ◽  
Vol 21 (4) ◽  
pp. 1335 ◽  
Author(s):  
Jean-Marie Lambert ◽  
Mohamad Omar Ashi ◽  
Nivine Srour ◽  
Laurent Delpy ◽  
Jérôme Saulière

The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid the synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Thus, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphocytes.


2004 ◽  
Vol 78 (10) ◽  
pp. 5139-5146 ◽  
Author(s):  
Jason J. LeBlanc ◽  
Karen L. Beemon

ABSTRACT Retroviruses package full-length, unspliced RNAs into progeny virions as dimerized RNA genomes. They also use unspliced RNAs as mRNAs to produce the gag and pol gene products. We asked whether a single Rous sarcoma virus (RSV) RNA can be translated and subsequently packaged or whether genomic packaging requires a nontranslated population of RNAs. We addressed this issue by utilizing the translation-dependent nonsense-mediated mRNA decay (NMD) pathway. NMD is the selective destruction of mRNAs bearing premature termination codons (PTCs). The pathway has been shown to be associated with splicing in higher eukaryotes. Here, we demonstrate that both translation and the cellular factor Upf1 are required for the decay of unspliced, PTC-bearing RSV RNA by the NMD pathway. To address the relationship between RNA translation and packaging, we examined virus produced in cells cotransfected with PTC-bearing retroviral clones and wild-type viral clones. We observed that PTC-bearing transcripts are packaged into viral particles at levels three- to fivefold less than those of control RNAs. Since PTC-mediated degradation requires translation, we conclude that RSV can package progeny virion particles using previously translated RNAs.


Sign in / Sign up

Export Citation Format

Share Document