scholarly journals Inhibitory control performance is repeatable across years and contexts in a wild bird population

2021 ◽  
Author(s):  
Gabrielle Davidson ◽  
Michael S Reichert ◽  
Jenny R Coomes ◽  
Ipek Kulahci ◽  
Ivan de la Hera ◽  
...  

Inhibitory control is one of several cognitive mechanisms required for self-regulation, decision making and attention towards tasks. Linked to a variety of maladaptive behaviours in humans, inhibitory control is expected to influence behavioural plasticity in animals in the context of foraging, social interaction, or responses to sudden changes in the environment. One widely used cognitive assay, the detour task, putatively tests inhibitory control. In this task, subjects must avoid impulsively touching transparent barriers positioned in front of food, and instead access the food by an alternative but known route. Recently it has been suggested that the detour task is unreliable and measures factors unrelated to inhibitory control, including motivation, previous experience and persistence. Consequently, there is growing uncertainty as to whether this task leads to erroneous interpretations about animal cognition and its links with socio-ecological traits. To address these outstanding concerns, we designed a variant of the detour task for wild great tits (Parus major) and deployed it at the nesting site of the same individuals across two spring seasons. This approach eliminated the use of food rewards, limited social confounds, and maximised motivation. We compared task performance in the wild with their performance in captivity when tested using the classical cylinder detour task during the non-breeding season. Task performance was temporally and contextually repeatable, and none of the confounds had any significant effect on performance, nor did they drive any of the observed repeatable differences among individuals. These results support the hypothesis that our assays captured intrinsic differences in inhibitory control. Instead of throwing the detour task out with the bathwater, we suggest confounds are likely system and experimental-design specific, and that assays for this potentially fundamental but largely overlooked source of behavioural plasticity in animal populations, should be validated and refined for each study system.

2020 ◽  
Vol 31 (3) ◽  
pp. 798-806 ◽  
Author(s):  
Ellis J G Langley ◽  
Gracie Adams ◽  
Christine E Beardsworth ◽  
Deborah A Dawson ◽  
Philippa R Laker ◽  
...  

Abstract To understand the evolution of cognitive abilities, we need to understand both how selection acts upon them and their genetic (co)variance structure. Recent work suggests that there are fitness consequences for free-living individuals with particular cognitive abilities. However, our current understanding of the heritability of these abilities is restricted to domesticated species subjected to artificial selection. We investigated genetic variance for, and genetic correlations among four cognitive abilities: inhibitory control, visual and spatial discrimination, and spatial ability, measured on >450 pheasants, Phasianus colchicus, over four generations. Pheasants were reared in captivity but bred from adults that lived in the wild and hence, were subject to selection on survival. Pheasant chicks are precocial and were reared without parents, enabling us to standardize environmental and parental care effects. We constructed a pedigree based on 15 microsatellite loci and implemented animal models to estimate heritability. We found moderate heritabilities for discrimination learning and inhibitory control (h2 = 0.17–0.23) but heritability for spatial ability was low (h2 = 0.09). Genetic correlations among-traits were largely positive but characterized by high uncertainty and were not statistically significant. Principle component analysis of the genetic correlation matrix estimate revealed a leading component that explained 69% of the variation, broadly in line with expectations under a general intelligence model of cognition. However, this pattern was not apparent in the phenotypic correlation structure which was more consistent with a modular view of animal cognition. Our findings highlight that the expression of cognitive traits is influenced by environmental factors which masks the underlying genetic structure.


2014 ◽  
Vol 10 (5) ◽  
pp. 20140178 ◽  
Author(s):  
Ella F. Cole ◽  
John L. Quinn

Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit ( Parus major ), the shy–bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether ‘exploration behaviour’, a captive assay of the shy–bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness.


2021 ◽  
Author(s):  
Marlen Fröhlich ◽  
Natasha Bartolotta ◽  
Caroline Fryns ◽  
Colin Wagner ◽  
Laurene Momon ◽  
...  

AbstractThe creation of novel communicative acts is an essential element of human language. Although some research suggests the presence of this ability in great apes, this claim remains controversial. Here, we use orang-utans (Pongo spp.) to systematically assess the effect of the wild-captive contrast on the repertoire size of communicative acts. We find that individual communicative repertoires are significantly larger in captive compared to wild settings, irrespective of species, age-sex class or sampling effort. Twenty percent of the orang-utan repertoire in captivity were not observed in the wild. In Sumatran orang-utans, the more sociable species, functional specificity was also higher in captive versus wild settings. We thus conclude that orang-utans, when exposed to a more sociable and terrestrial lifestyle, have the behavioural plasticity to invent new communicative behaviours that are highly functionally specific. This productive capacity by great apes is a major prerequisite for the evolution of language and seems to be ancestral in the hominid lineage.


Anthrozoology ◽  
2018 ◽  
pp. 1-16
Author(s):  
Geoff Hosey ◽  
Vicky Melfi

Many animals’ lives, both in the wild and in captivity, are now greatly influenced by human activities. As a result there are many opportunities for human–animal interactions (HAIs), leading to the establishment of human–animal relationships (HARs). In some cases these can result in strong emotional attachments, human–animal bonds (HABs). The study of these constitutes the subject of Anthrozoology. In this chapter we attempt to define these terms in a way that is applicable across all of the different contexts in which humans and animals come into contact. These relationships can have far-reaching consequences, not only for the individual animals and people involved in the interactions, but also for animal populations and human society more generally, so there are many reasons why we should care and be concerned with them. This chapter introduces some of these areas of concern and their relevance to the different contexts, which are explored in subsequent chapters.


2021 ◽  
Author(s):  
Joseph J. Hanly ◽  
Luca Livraghi ◽  
Christa Heryanto ◽  
W. Owen McMillan ◽  
Chris D. Jiggins ◽  
...  

Captive populations often harbor variation that is not present in the wild due to artificial selection. Recent efforts to map this variation have provided insights into the genetic and molecular basis of variation. Heliconius butterflies display a large array of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here we sought to identify the genetic basis of an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78kb deletion at the cortex wing patterning locus as the ivory mutation. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5' region of the cortex gene that includes a facultative 5' UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.


2011 ◽  
Vol 366 (1567) ◽  
pp. 969-977 ◽  
Author(s):  
Tore Slagsvold ◽  
Karen L. Wiebe

We briefly review the literature on social learning in birds, concluding that strong evidence exists mainly for predator recognition, song, mate choice and foraging. The mechanism of local enhancement may be more important than imitation for birds learning to forage, but the former mechanism may be sufficient for faithful transmission depending on the ecological circumstances. To date, most insights have been gained from birds in captivity. We present a study of social learning of foraging in two passerine birds in the wild, where we cross-fostered eggs between nests of blue tits, Cyanistes caeruleus and great tits, Parus major . Early learning causes a shift in the foraging sites used by the tits in the direction of the foster species. The shift in foraging niches was consistent across seasons, as showed by an analysis of prey items, and the effect lasted for life. The fact that young birds learn from their foster parents, and use this experience later when subsequently feeding their own offspring, suggests that foraging behaviour can be culturally transmitted over generations in the wild. It may therefore have both ecological and evolutionary consequences, some of which are discussed.


2011 ◽  
Vol 279 (1731) ◽  
pp. 1168-1175 ◽  
Author(s):  
Ella F. Cole ◽  
John L. Quinn

Competitive ability is a major determinant of fitness, but why individuals vary so much in their competitiveness remains only partially understood. One increasingly prevalent view is that realized competitive ability varies because it represents alternative strategies that arise because of the costs associated with competitiveness. Here we use a population of great tits ( Parus major ) to explore whether individual differences in competitive ability when foraging can be explained by two traits that have previously been linked to alternative behavioural strategies: the personality trait ‘exploration behaviour’ and a simple cognitive trait, ‘innovative problem-solving performance’. We assayed these traits under standardized conditions in captivity and then measured competitive ability at feeders with restricted access in the wild. Competitive ability was repeatable within individual males across days and correlated positively with exploration behaviour, representing the first such demonstration of a link between a personality trait and both competitive ability and food intake in the wild. Competitive ability was also simultaneously negatively correlated with problem-solving performance; individuals who were poor competitors were good at problem-solving. Rather than being the result of variation in ‘individual quality’, our results support the hypothesis that individual variation in competitive ability can be explained by alternative behavioural strategies.


2011 ◽  
Vol 8 (3) ◽  
pp. 330-332 ◽  
Author(s):  
Timothy J. Greives ◽  
Sjouke A. Kingma ◽  
Giulia Beltrami ◽  
Michaela Hau

The hormone melatonin is known to play an important role in regulating many seasonal changes in physiology, morphology and behaviour. In birds, unlike in mammals, melatonin has thus far been thought to play little role in timing seasonal reproductive processes. This view is mainly derived from laboratory experiments on male birds. This study tests whether melatonin is capable of influencing the timing of clutch initiation in wild female songbirds. Free-living female great tits ( Parus major ) treated with melatonin-filled implants prior to the breeding season initiated their first clutch of the season significantly later than females carrying an empty implant. Melatonin treatment did not affect clutch size. Further, melatonin treatment did not delay the onset of daily activity in the wild nor adversely affect body mass in captivity compared with controls. These data suggest a previously unknown role for this hormone in regulating the timing of clutch initiation in the wild.


Primates ◽  
2021 ◽  
Author(s):  
Madeleine Geiger

AbstractHuman impact influences morphological variation in animals, as documented in many captive and domestic animal populations. However, there are different levels of human impact, and their influence on the pattern and rate of morphological variation remains unclear. This study contributes to the ongoing debate via the examination of cranial and mandibular shape and size variation and pace of change in Japanese macaques (Macaca fuscata). This species is ideal for tackling such questions because different wild, wild-provisioned, and captive populations have been monitored and collected over seven decades. Linear measurements were taken on 70 skulls from five populations, grouped into three ‘human impact groups’ (wild, wild-provisioned, and captive). This made it possible to investigate the pattern and pace of skull form changes among the human impact groups as well as over time within the populations. It was found that the overall skull shape tends to differ among the human impact groups, with captive macaques having relatively longer rostra than wild ones. Whether these differences are a result of geographic variation or variable human impact, related to nutritional supply and mechanical properties of the diet, is unclear. However, this pattern of directed changes did not seem to hold when the single captive populations were examined in detail. Although environmental conditions have probably been similar for the two examined captive populations (same captive locality), skull shape changes over the first generations in captivity were mostly different. This varying pattern, together with a consistent decrease in body size in the captive populations over generations, points to genetic drift playing a role in shaping skull shape and body size in captivity. In the captive groups investigated here, the rates of change were found to be high compared to literature records from settings featuring different degrees of human impact in different species, although they still lie in the range of field studies in a natural context. This adds to the view that human impact might not necessarily lead to particularly fast rates of change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina B. Blanco ◽  
Lydia K. Greene ◽  
Robert Schopler ◽  
Cathy V. Williams ◽  
Danielle Lynch ◽  
...  

AbstractIn nature, photoperiod signals environmental seasonality and is a strong selective “zeitgeber” that synchronizes biological rhythms. For animals facing seasonal environmental challenges and energetic bottlenecks, daily torpor and hibernation are two metabolic strategies that can save energy. In the wild, the dwarf lemurs of Madagascar are obligate hibernators, hibernating between 3 and 7 months a year. In captivity, however, dwarf lemurs generally express torpor for periods far shorter than the hibernation season in Madagascar. We investigated whether fat-tailed dwarf lemurs (Cheirogaleus medius) housed at the Duke Lemur Center (DLC) could hibernate, by subjecting 8 individuals to husbandry conditions more in accord with those in Madagascar, including alternating photoperiods, low ambient temperatures, and food restriction. All dwarf lemurs displayed daily and multiday torpor bouts, including bouts lasting ~ 11 days. Ambient temperature was the greatest predictor of torpor bout duration, and food ingestion and night length also played a role. Unlike their wild counterparts, who rarely leave their hibernacula and do not feed during hibernation, DLC dwarf lemurs sporadically moved and ate. While demonstrating that captive dwarf lemurs are physiologically capable of hibernation, we argue that facilitating their hibernation serves both husbandry and research goals: first, it enables lemurs to express the biphasic phenotypes (fattening and fat depletion) that are characteristic of their wild conspecifics; second, by “renaturalizing” dwarf lemurs in captivity, they will emerge a better model for understanding both metabolic extremes in primates generally and metabolic disorders in humans specifically.


Sign in / Sign up

Export Citation Format

Share Document