scholarly journals CUT&Tag-BS: an efficient and low-cost method for simultaneous profiling of histone modification and DNA methylation

2021 ◽  
Author(s):  
Ruifang Li ◽  
Sara A. Grimm ◽  
Paul Wade

It remains a challenge to decipher the complex relationship between DNA methylation, histone modification, and the underlying DNA sequence with limited input material. Here, we developed an efficient, low-input, and low-cost method for simultaneous profiling of genomic localization of histone modification and methylation status of the underlying DNA at single-base resolution from the same cells in a single experiment by integrating CUT&Tag with tagmentation-based bisulfite sequencing (CUT&Tag-BS). We demonstrated the validity of our method for both active and repressive histone modifications using 250,000 mouse ESCs. CUT&Tag-BS shows similar enrichment patterns of histone modification to those observed in non-bisulfite-treated control; it further reveals that H3K4me1-marked regions are mostly CpG-poor, lack methylation concordance, and exhibit prevalent DNA methylation heterogeneity among the cells. We anticipate that CUT&Tag-BS will be widely applied to directly address the genomic relationship between DNA methylation and histone modification, especially in low-input scenarios with precious biological samples.

2022 ◽  
Vol 12 ◽  
Author(s):  
Ritu Raina ◽  
Abdulmajeed G. Almutary ◽  
Sali Abubaker Bagabir ◽  
Nazia Afroze ◽  
Sharmila Fagoonee ◽  
...  

Purpose: Plant-derived phytochemicals have shown epigenetic modulatory effect in different types of cancer by reversing the pattern of DNA methylation and chromatin modulation, thereby restoring the function of silenced tumor-suppressor genes. In the present study, attempts have been made to explore chrysin-mediated epigenetic alterations in HeLa cells.Methods: Colony formation and migration assays followed by methylation-specific PCR for examining the methylation status of CpG promoters of various tumor-suppressor genes (TSGs) and the expression of these TSGs at the transcript and protein levels were performed. Furthermore, global DNA methylation; biochemical activities of DNA methyltransferases (DNMTs), histone methyl transferases (HMTs), histone deacetylases (HDACs), and histone acetyl transferases (HATs) along with the expression analysis of chromatin-modifying enzymes; and H3 and H4 histone modification marks analyses were performed after chrysin treatment.Results: The experimental analyses revealed that chrysin treatment encourages cytostatic behavior as well as inhibits the migration capacity of HeLa cells in a time- and dose-dependent manner. Chrysin reduces the methylation of various tumor-suppressor genes, leading to their reactivation at mRNA and protein levels. The expression levels of various chromatin-modifying enzymes viz DNMTs, HMTs, HDACs, and HATS were found to be decreased, and H3 and H4 histone modification marks were modulated too. Also, reduced global DNA methylation was observed following the treatment of chrysin.Conclusion: This study concludes that chrysin can be used as a potential epigenetic modifier for cancer treatment and warrants for further experimental validation.


2021 ◽  
Author(s):  
Ruifang Li ◽  
Sara A Grimm ◽  
Paul A Wade

AbstractDeciphering epigenetic regulation of gene expression requires measuring the epigenome and transcriptome jointly. Single-cell multi-omics technologies have been developed for concurrent profiling of chromatin accessibility and gene expression. However, multi-omics profiling of low-input bulk samples remains challenging. Therefore, we developed low-input ATAC&mRNA-seq, a simple and robust method for studying the role of chromatin structure in gene regulation in a single experiment with thousands of cells, to maximize insights from limited input material by obtaining ATAC-seq and mRNA-seq data simultaneously from the same cells with data quality comparable to conventional mono-omics assays. Integrative data analysis revealed similar strong association between promoter accessibility and gene expression using the data of low-input ATAC&mRNA-seq as using single-assay data, underscoring the accuracy and reliability of our dual-omics assay to generate both data types simultaneously with just thousands of cells. We envision our method to be widely applied in many biological disciplines with limited materials.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3464-3464
Author(s):  
Xiaoqing Li ◽  
Jun Liu ◽  
Rui Zhou ◽  
Shi Huang ◽  
Xian-Ming Chen ◽  
...  

Abstract Abstract 3464 Poster Board III-352 MicroRNA-22 is one of the miRNAs frequently downregulated in human ALL cells and may play an important anti-tumor role in normal hematopoiesis. Histone modification and DNA methylation can have different roles in gene silencing in cancer. To investigate whether histone modifications would contribute to the dysregulation of miRNA-22 in acute lymphoblastic leukemia (ALL), the effect of a histone deacetylase inhibitor, trichostatin A (TSA), on miRNA-22 expression of primary ALL cells was analyzed by real-time PCR. The total number of patients included to this study is 33, including 26 samples of leukemia (18 of ALL and 8 of acute myeloid leukemia) and 7 normal controls. All patient blood samples were collected at the time of diagnosis. We detected a lower expression of pri-miR-22 in PMBCs from ALL patients compared with that from the health volunteers. Treatment with TSA significantly increased pri-miR-22 expression in PMBCs from ALL patients, but not in cells from the health volunteers. Whereas PMBCs from ALL patients and AML patients showed comparable levels of pri-miR-22. TSA treatment had no effect on pri-miR-22 expression in PMBCs from AML patients, suggesting TSA-mediated upregulation of miR-22 transcription in ALL but not AML malignant cells. Moreover, we used MPS assay to analyze the methylation status at the promoter element of miR-22 gene in primary human specimens. No DNA hypermethylation was detected in PMBCs from the health volunteers and patients with either ALL or AML. These data provide further evidence that miR-22 silencing in ALL cells may be DNA methylation-independent. In contrast, accumulation of the repressive histone marker H3K27 trimethylation (H3K27triM) was indentified around the transcriptional start point of the gene, which reduced by TSA treatment. In conclusion, we showed that histone modification is involved in miRNA dysregulation in human ALL cells. Specifically, the silencing of miR-22 in ALL cells is associated with the accumulation of histone modification in its promoter element of miR-22 gene but independent of DNA methylation. The accumulation of H3K27triM may be a novel epigenetic mechanism for miR-22 silencing in ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3354-3354
Author(s):  
Thomas A. Paul ◽  
Horatiu Muresan ◽  
Emily Prentice ◽  
Linda Wolff

Abstract p15INK4b is a cyclin-dependent kinase inhibitor known to regulate the G1-to-S transition of the cell cycle and to be involved in negatively regulating myeloid progenitor cell production. DNA hypermethylation leading to transcriptional silencing of p15INK4b has been reported in up to 70% of acute myeloid leukemia (AML) patient samples. In our study we sought to determine if p15INK4b DNA methylation in AML is accompanied by repressive histone modifications that contribute to the transcriptional repression of the gene at the chromatin level. Chromatin immunoprecipitation and DNA tiling microarrays (ChIP-on-chip) with 20bp resolution were utilized to assess the distribution of histone modifications over a 1.2 megabase region of human chromosome 9 including p15INK4b and adjacent tumor suppressor genes p14ARF and p16INK4a. We found that AML cell lines with p15INK4b hypermethylation (Kasumi-1, KG-1, and KG-1a) had high levels of the repressive histone modification trimethylation of lysine 27 of histone H3 (H3K27me3). Remarkably, this modification spanned the entire INK4b-ARF-INK4a region while little binding was observed in adjacent regions of chromosome 9. Binding of EZH2, the polycomb associated H3K27 histone methyltransferase, co-localized with H3K27me3 distribution over the INK locus. H3K27me3 was not identified at this region in AML cell lines without p15INK4b DNA methylation (U937 and HL-60). In contrast, histone modifications associated gene activation, trimethylation of lysine 4 of H3 (H3K4me3) and acetylation of lysine 9 (H3K9Ac), were found at the p15INK4b promoter in these cells. Enrichment of another repressive histone modification, trimethylation of histone H3 on lysine 9 (H3K9me3), did not correlate with the DNA methylation status of p15INK4b and appeared highest in exons 2 and 3 of p16INK4a in most cell lines. Since p15INK4b reactivation has been described as a component of a patient’s response to epigenetic therapies in AML treatment, we sought to determine the dynamics of histone modifications following treatment with the DNA methyltransferase (DNMT) inhibitor 5-aza-2’-deoxycytidine and histone deacetylase (HDAC) inhibitor tricostatin A. In KG-1 cells, a reduction in p15INK4b DNA methylation was observed following treatment with DNMT inhibitors. Unexpectedly, treatment with HDAC inhibitors alone was also capable of reducing p15INK4b DNA methylation suggesting that a repressive chromatin structure contributes to the DNA methylation in this cell line. Loss of DNA methylation was not sufficient for reactivation of p15INK4b expression as detectible expression was only observed following the combined treatment of DNMT and HDAC inhibitors. Reactivation was associated with an increase in the activation-associated histone modifications H3K4me3 and H3K9Ac at the promoter region and, unexpectedly, maintenance of the repressive modification H3K27me3. This “bivalent” histone modification pattern is characteristic of many developmentally poised genes in embryonic stem cells and correlates with the histone methylation status of p15INK4b we observed in CD34+ bone marrow progenitor/ stem cells. This data indicates that optimal epigenetic therapies targeted to reactivate p15INK4b expression should be designed to induce activating histone modifications in addition to reducing DNA methylation.


2010 ◽  
Vol 37 (9) ◽  
pp. 960-966 ◽  
Author(s):  
Jie CHEN ◽  
Dong-Jie LI ◽  
Cui ZHANG ◽  
Ning LI ◽  
Shi-Jie LI

2020 ◽  
Vol 20 ◽  
Author(s):  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
Soheila Montazersaheb ◽  
Yasin Bagheri

Background:: Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that, the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic altera-tions as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, be-yond available conventional therapy. Objective:: This review will focus on a better understanding of the epigenetic mechanisms in cancer development and pro-gression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and mi-croRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel well-suited approaches against ALL. Conclusion:: According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifica-tions, particularly DNA hyper-methylation, histone modification, and miRNA alteration.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


Sign in / Sign up

Export Citation Format

Share Document