Histone Modifications Associated with DNA Methylation and Transcriptional Repression of p15INK4b in Acute Myeloid Leukemia.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3354-3354
Author(s):  
Thomas A. Paul ◽  
Horatiu Muresan ◽  
Emily Prentice ◽  
Linda Wolff

Abstract p15INK4b is a cyclin-dependent kinase inhibitor known to regulate the G1-to-S transition of the cell cycle and to be involved in negatively regulating myeloid progenitor cell production. DNA hypermethylation leading to transcriptional silencing of p15INK4b has been reported in up to 70% of acute myeloid leukemia (AML) patient samples. In our study we sought to determine if p15INK4b DNA methylation in AML is accompanied by repressive histone modifications that contribute to the transcriptional repression of the gene at the chromatin level. Chromatin immunoprecipitation and DNA tiling microarrays (ChIP-on-chip) with 20bp resolution were utilized to assess the distribution of histone modifications over a 1.2 megabase region of human chromosome 9 including p15INK4b and adjacent tumor suppressor genes p14ARF and p16INK4a. We found that AML cell lines with p15INK4b hypermethylation (Kasumi-1, KG-1, and KG-1a) had high levels of the repressive histone modification trimethylation of lysine 27 of histone H3 (H3K27me3). Remarkably, this modification spanned the entire INK4b-ARF-INK4a region while little binding was observed in adjacent regions of chromosome 9. Binding of EZH2, the polycomb associated H3K27 histone methyltransferase, co-localized with H3K27me3 distribution over the INK locus. H3K27me3 was not identified at this region in AML cell lines without p15INK4b DNA methylation (U937 and HL-60). In contrast, histone modifications associated gene activation, trimethylation of lysine 4 of H3 (H3K4me3) and acetylation of lysine 9 (H3K9Ac), were found at the p15INK4b promoter in these cells. Enrichment of another repressive histone modification, trimethylation of histone H3 on lysine 9 (H3K9me3), did not correlate with the DNA methylation status of p15INK4b and appeared highest in exons 2 and 3 of p16INK4a in most cell lines. Since p15INK4b reactivation has been described as a component of a patient’s response to epigenetic therapies in AML treatment, we sought to determine the dynamics of histone modifications following treatment with the DNA methyltransferase (DNMT) inhibitor 5-aza-2’-deoxycytidine and histone deacetylase (HDAC) inhibitor tricostatin A. In KG-1 cells, a reduction in p15INK4b DNA methylation was observed following treatment with DNMT inhibitors. Unexpectedly, treatment with HDAC inhibitors alone was also capable of reducing p15INK4b DNA methylation suggesting that a repressive chromatin structure contributes to the DNA methylation in this cell line. Loss of DNA methylation was not sufficient for reactivation of p15INK4b expression as detectible expression was only observed following the combined treatment of DNMT and HDAC inhibitors. Reactivation was associated with an increase in the activation-associated histone modifications H3K4me3 and H3K9Ac at the promoter region and, unexpectedly, maintenance of the repressive modification H3K27me3. This “bivalent” histone modification pattern is characteristic of many developmentally poised genes in embryonic stem cells and correlates with the histone methylation status of p15INK4b we observed in CD34+ bone marrow progenitor/ stem cells. This data indicates that optimal epigenetic therapies targeted to reactivate p15INK4b expression should be designed to induce activating histone modifications in addition to reducing DNA methylation.

Blood ◽  
2010 ◽  
Vol 115 (15) ◽  
pp. 3098-3108 ◽  
Author(s):  
Thomas A. Paul ◽  
Juraj Bies ◽  
Donald Small ◽  
Linda Wolff

Abstract DNA hypermethylation of the p15INK4b tumor suppressor gene is commonly observed in acute myeloid leukemia (AML). Repressive histone modifications and their associated binding proteins have been implicated in the regulation of DNA methylation and the transcriptional repression of genes with DNA methylation. We have used high-density chromatin immunoprecipitation-on-chip to determine the histone modifications that normally regulate p15INK4b expression in AML cells and how these marks are altered in cells that have p15INK4b DNA methylation. In AML patient blasts without p15INK4b DNA methylation, a bivalent pattern of active (H3K4me3) and repressive (H3K27me3) modifications exist at the p15INK4b promoter. AML patient blasts with p15INK4b DNA methylation lose H3K4me3 at p15INK4b and become exclusively marked by H3K27me3. H3K27me3, as well as EZH2, extends throughout p14ARF and p16INK4a, indicating that polycomb repression of p15INK4b is a common feature in all AML blasts irrespective of the DNA methylation status of the gene. Reactivation of p15INK4b expression in AML cell lines and patient blasts using 5-aza-2′-deoxycytidine (decitabine) and trichostatin A increased H3K4me3 and maintained H3K27me3 enrichment at p15INK4b. These data indicate that AML cells with p15INK4b DNA methylation have an altered histone methylation pattern compared with unmethylated samples and that these changes are reversible by epigenetic drugs.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3640-3640 ◽  
Author(s):  
Ryo Shimizu ◽  
Tomoya Muto ◽  
Masahiro Takeuchi ◽  
Shuhei Koide ◽  
Yuhei Nagao ◽  
...  

Abstract The expression of NR4A3, which is a member of the gene encoding NR4A orphan nuclear receptor subfamily, has been reported to be commonly silenced in blasts of patients with acute myeloid leukemia (AML), irrespective of karyotype. In line with this finding, Nr4a1-/-/Nr4a3-/- mice rapidly develop AML within one month following birth (Mullican et al., 2007). In addition, Nr4a1+/-/Nr4a3-/- and Nr4a1-/-/Nr4a3+/- mice show myelodysplastic/myeloproliferative neoplasms (Ramirez-Herrick et al., 2011), suggesting that NR4A3 functions as a tumor suppressor gene in myeloid malignancies. The extremely short latency of AML development in Nr4a1-/-/Nr4a3+/- mice indicates that silencing these tumor suppressors is sufficient to induce AML and that NR4A3 has a crucial role in the pathogenesis of AML. Thus, unveiling the molecular mechanism that regulates NR4A3 expression in AML would facilitate the development of novel therapies, including transcriptional reactivation of the gene. However, the therapeutic modalities targeting NR4A3 have been hindered by our minimal understanding of the mechanism underlying reduced NR4A3 expression, particularly in human AML cells. Abnormal epigenetic regulation is a common mechanism in the pathogenesis of several types of cancers. For instance, the expression of several tumor suppressor genes, such as p16 and MLH1, is repressed due to DNA hypermethylation at their promoter regions. Given that loss-of-function mutations in NR4A3 have not been reported in AML to date, we hypothesized that DNA hypermethylation contributes to a reduction in NR4A3 expression in AML. To test our hypothesis, we analyzed DNA methylation status of NR4A3 in human AML cells. We first compared the level of NR4A3 expression in eight human AML cell lines and two human primary AML samples, with that in CD34+ mononuclear bone marrow (BM) cells from healthy human controls. As expected, the expression of NR4A3 was markedly reduced in all of the AML cell lines and primary AML cells compared with that in the cells of the healthy controls. To evaluate the function of NR4A3 in human AML cells, we ectopically overexpressed NR4A3 in a human AML cell line (NB4 cells). The growth of NR4A3 -overexpressing NB4 cells was remarkably compromised compared with that of the controls, suggesting a tumor suppressive function of NR4A3 in both human AML and murine cells. To investigate the DNA methylation status of NR4A3, we performed bisulfite sequencing assays using eight human AML cell lines (HL60, NB4, Kasumi, TF1, U937, K562, MOLM13, and THP1) as well as CD34+ BM cells from healthy controls. Unexpectedly, a hypermethylated CpG site in the promoter region was not detected in any of the cell lines. However, the drastically or mildly methylated region including twenty eight CpGs was identified approximately 3 kb downstream of the transcription start site in six AML cell lines (97.5%, 78.3%, 77.1%, 89.9%, 95.2%, and 86.9% in HL60, NB4, Kasumi, TF1, U937, and K562, respectively) and two mixed lineage leukemia-related cell lines (31.0% and 53.6% in MOLM13 and THP1, respectively), whereas this site was hypomethylated in the controls (n = 2; mean, 12.7%; range, 7.1%-18.2%). To evaluate the contribution of this hypermethylated region to reduced NR4A3 expression, the six AML cell lines with heavily hypermethylated CpGs at NR4A3 and two human primary AML cell samples were treated with a DNA methyltransferase inhibitor (decitabine; DAC) for three or five days. DAC exposure inhibited cell growth and restored the expression of NR4A3 in all AML cell lines and primary cells in a dose- and time-dependent manner. Next, we examined the status of DNA methylation at the CpG site following DAC treatment with bisulfite sequencing assays. The frequencies of methylated CpG in HL60, NB4, and K562 cells was reduced from 97.5% to 53.6%, 78.3% to 68.5%, and 86.9% to 67.5% after DAC treatment, respectively. In contrast, the methylation status in Kasumi, TF1, and U937 cells did not significantly changed after DAC treatment. Our findings in the present study suggest that DNA hypermethylation may partially account for the transcriptional inactivation of NR4A3 in AML. However, the mechanism of reduced NR4A3 expression is complex and variable depending on the genetic background. We are currently working on a more detailed analysis of DNA methylation using human primary cells, by extending the regions for investigation, such as enhancer regions. Disclosures Nakaseko: Novartis: Honoraria, Research Funding, Speakers Bureau; Otsuka: Honoraria, Research Funding; BMS: Honoraria, Research Funding, Speakers Bureau; Pfizer: Honoraria, Research Funding, Speakers Bureau.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 539 ◽  
Author(s):  
Alexei J. Stuckel ◽  
Wei Zhang ◽  
Xu Zhang ◽  
Shuai Zeng ◽  
Urszula Dougherty ◽  
...  

In colorectal cancer (CRC), upregulation of the C-X-C motif chemokine receptor 4 (CXCR4) is correlated with metastasis and poor prognosis, highlighting the need to further elucidate CXCR4’s regulation in CRC. For the first time, DNA methylation and 5-hydroxymethylcytosine aberrations were investigated to better understand the epigenetic regulation of CXCR4 in CRC. CXCR4 expression levels were measured using qPCR and immunoblotting in normal colon tissues, primary colon cancer tissues and CRC cell lines. Publicly available RNA-seq and methylation data from The Cancer Genome Atlas (TCGA) were extracted from tumors from CRC patients. The DNA methylation status spanning CXCR4 gene was evaluated using combined bisulfite restriction analysis (COBRA). The methylation status in the CXCR4 gene body was analyzed using previously performed nano-hmC-seal data from colon cancers and adjacent normal colonic mucosa. CXCR4 expression levels were significantly increased in tumor stromal cells and in tumor colonocytes, compared to matched cell types from adjacent normal-appearing mucosa. CXCR4 promoter methylation was detected in a minority of colorectal tumors in the TCGA. The CpG island of the CXCR4 promoter showed increased methylation in three of four CRC cell lines. CXCR4 protein expression differences were also notable between microsatellite stable (MSS) and microsatellite instable (MSI) tumor cell lines. While differential methylation was not detected in CXCR4, enrichment of 5-hydroxymethylcytosine (5hmC) in CXCR4 gene bodies in CRC was observed compared to adjacent mucosa.


2011 ◽  
Author(s):  
Maribel Tirado-Gomez ◽  
Cristina Munoz ◽  
Paul R. Cordero ◽  
Raul Bernabe ◽  
Mercedes Lacourt ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2951-2951
Author(s):  
Jun Fan ◽  
Asou Norio ◽  
Masao Matsuoka

Abstract DNA methylation plays an important role in the development and aging of mammalian cells, and its dysregulation has been frequently observed in cancer cells. The purpose of this study is to investigate the involvement of aberrant DNA methylation in B chronic lymphocytic leukemia (B-CLL) cells. We compared methylation status of B-CLL cells isolated from patients with that of normal CD19+ cells isolated from health donors by methylated CpG island amplification/representative difference analysis method. 5 hypermethylated and 27 hypomethylated DNA regions were identified in B-CLL sample. Among the 27 hypomethylated regions, 5 located on chromosome 9q34, 3 on 10q25-26 and 4 on 19q13. Methylation status was confirmed by sequencing using sodium bisulfite-treated DNA samples. By comparing DNA samples from same patients at different clinical stages, we found that lower methylation density in these regions is linked with disease progression. Expression of 15 genes surrounding hypomethylated regions was studied by RT-PCR. Expression of laminin beta3 gene and melanotransferrin gene was found to be upregulated in all B-CLL cell lines as well as lymphoma cell lines comparing with normal CD19+ peripheral blood mononuclear cells. B-cell CLL/lymphoma 11b gene showed increased expression in only 2 B-CLL cell lines. For other genes, no transcriptional change was found regardless of changed DNA methylation. This study showed the predominance of DNA hypomethylation in B-CLL cells compared with hypermethylation. Hypomethylated regions clustered in a limited number of chromosomes and methylation density appeared to be inversely correlated with disease progress. Figure Figure


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4386-4386
Author(s):  
Ye Zhao ◽  
Zi-xing Chen ◽  
Shao-yan Hu ◽  
Jian-nong Cen

Abstract The methylation at CpG island in the promoter region of a gene is one of the important epigenetic mechanism which regulates the gene activity. To study the DNA methylation pattern of WT1 gene promoter region within hematologic neoplastic cell lines and its correlation with WT1 gene expression by using the PCR-based methods. RT-PCR and Methylation-specific PCR were performed to study the WT1 gene expression in 8226, HL-60, Jurkat, K562, KG-1, NB4, Raji, SHI-1, U266 and U937 cell lines and the DNA methylation status in promoter region of WT1 gene. After treatment of U937 cell line by 5-aza-CdR, a demethylation inducing agent, the changes of WT1 gene expression level and the methylation status in its promter region in U937 cells was determined. Our Results showed that HL-60, K562, KG-1, NB4, SHI-1 cell lines demonstrated higher level of WT1 expression, while extremely low level was found in 8226, Jurkat, Raji, U266 and U937. The DNA hypermethylation in WT1 gene promoter region was identified in 8226, Jurkat, Raji, U266 and U937 cell lines. The WT1 gene expression in U937 was markedly enhanced after treatment with 5-aza-CdR in company with the decrease of methylated level and the increase of unmethylated level in its promoter region. These results indicate that modulation of the DNA methylation in WT1 promoter region is one of the epigenetic mechanisms to regulate its expression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2127-2127
Author(s):  
Shao-qing Kuang ◽  
Weigang Tong ◽  
Hui Yang ◽  
Mathew K. Lee ◽  
Zhi-Hong Fang ◽  
...  

Abstract Aberrant DNA methylation is a common molecular feature of both pediatric and adult ALL. Specific methylation patterns predict for poor prognosis (Shen et al Blood 2004), and reactivation of epigenetically inactivated molecular pathways results in induction of leukemia cell death (Kuang et al. Oncogene 2007). Until now most studies of methylation in ALL have been based on arbitrary gene selection methods. To overcome this limitation and to study hundreds of promoter CpG islands simultaneously, we have developed a method that combines MCA (Methylated CpG Island Amplification) with either RDA (Representational Difference Analysis) or the Agilent Promoter Microarray platform. With these methods differentially methylated DNA treated with bisulfite is generated after mixing tester DNA (in our case DNA from de novo refractory Ph negative and MLL negative ALL patients) with driver DNA (normal B cell controls) and using specific restriction enzymes and several rounds of PCR. DNA fragments thus generated are either cloned (RDA) or labeled and spotted on the Agilent Array. Using this technology, that can potentially interrogate up to 17K promoters, we have identified 932 promoters targets of aberrant DNA methylation in poor risk ALL from patients that cannot be currently identified by standard molecular methods (Ph and MLL negative). The genes associated with these promoters are distributed through the human genome but an overrepresentation of methylated promoters located in chromosomes 3, 9, 11 and 19 was detected. Using molecular pathway clustering analysis, 404 of these genes are grouped together in 29 specific functional pathways. We have validated the methylation of 31 of these 923 genes by bisulfite pyrosequencing. Of these, 27 (87%) were confirmed to be hypermethylated in 23 human leukemia cell lines but not in normal controls (N=15). Methylation status analysis of these 27 genes allowed for the segregation of T cell versus B cell leukemia cell lines. Fifteen of these genes (GIPC2, RSPO1, MAGI1, CAST1, ADCY5, HSPA4L, OCLN, EFNA5, MSX2, GFPT2, GNA14, SALL1, MYO5B, ZNF382 and MN1) were also frequently hypermethylated in primary ALL samples. Expression analysis of 6 of these genes (GIPC2, MAGI1, ADCY5, HSPA4L, OCLN and GNA14) in leukemia cell lines further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with 5′-aza-2′-deoxycytidine and trichostatin A resulted in gene re-expression, further confirming the role of DNA methylation in their silencing. In summary, we have identified in excess of 900 targets of aberrant DNA methylation in ALL. The study of the epigenetically suppressed pathways represented by these genes should allow us to further understand the molecular pathogenesis of ALL and develop new prognostic biomarkers for patients with Ph and MLL negative disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1798-1798
Author(s):  
Brian A Walker ◽  
Paola E. Leone ◽  
Nicholas J Dickens ◽  
Kevin D Boyd ◽  
David Gonzalez ◽  
...  

Abstract Abstract 1798 Poster Board I-824 Histone modifications are known to mediate transcriptional regulation through changes in chromatin condensation and as such can lead to aberrant transcriptional patterns resulting in malignant transformation. Modulation of chromatin structure via histone modification is becoming recognised as an important pathogenic mechanism in myeloma and has been suggested by the over-expression of MMSET, a histone methyltransferase, by the t(4;14) chromosomal rearrangement. More recently inactivation of UTX, a histone demethylase, has also been suggested to have a role in myeloma pathogenesis and both UTX and MMSET are mediators of transcriptional repression. UTX is inactivated in a number of different cancer cell lines but importantly, mutations and deletions have been detected in myeloma cell lines and we wished to follow up on this observation in uniformly treated clinical cases. UTX is a large gene found on the X chromosome covering 240 kb of genomic DNA and consists of 29 exons encoding a protein with both JmjC-domains and tricopeptide repeats responsible for histone demethylation and polycomb protein interactions. Inactivation of UTX occurs through deletions of individual exons through to large whole gene deletions as well as by mutations scattered throughout the 29 exons. A further mechanism of UTX inactivation which has not been looked for to date is via DNA methylation of the CpG island upstream of the transcriptional start site. We set out to determine the status of UTX in our dataset which includes expression, mapping, and methylation array data from presenting myeloma samples entered into the MRC Myeloma IX clinical trial. The gene expression of UTX was measured on 272 samples using Affymetrix U133 Plus 2.0 arrays and showed that 80% of samples do not express UTX transcripts but using expression quartile analysis we could not detect an effect on overall survival. The mechanism underlying the abrogation of expression was investigated further using the Affymetrix 500K SNP mapping array on a subset of 114 samples to detect copy number alterations. UTX was hemizygously deleted in 21 (42%) female samples and was completely deleted in 1 male sample, at the resolution of the arrays. In order to determine if individual exons were deleted, at a resolution below that detectable by mapping arrays, we performed quantitative PCR coupled with high resolution melting (HRM) analysis using the Rotor-gene Q real-time cycler (Qiagen). Exons were amplified, over 40 cycles, to obtain products of ∼200 bp using LC Green Plus mastermix (Idaho Technologies) in a 10 μl reaction on the Rotor-gene Q with a final HRM step from 72-95 °C with increments of 0.1 °C. Amplification plots combined with the HRM step allows us to identify both homozygous deletions and mutations within the exons. We screened all 114 samples for micro-deletions and mutations and found homozygous deletions in ∼7% of samples and identified a significant proportion of mutations using the HRM method which accounted for a total of ∼10% of gene inactivation. In order to determine if methylation could be responsible for inactivation of the remaining allele we used the Illumina Infinium humanmethylation27 array to study the methylation status at the UTX locus. This array interrogates 27,578 highly informative CpG sites per sample at the single-nucleotide resolution using bisulfite converted DNA. The results of this analysis are presented as an average beta-score where 1.0 is fully methylated and 0 is fully unmethylated. Samples were analyzed using Illumina GenomeStudio and the custom differential methylation algorithm. In samples with a diploid copy number of UTX the methylation signals covered 2 ranges: hemi-methylated (0.35-0.55, n=7) and hyper-methylated (0.73-0.89, n=14). In samples with 1 copy of UTX, which includes all males, there were 3 ranges: hypomethylated (0.08-0.21, n=5), hemi-methylated (0.35-0.51, n=3), and hypermethylated (0.66-0.88, n=48). All of the hypomethylated samples with a single copy of UTX were male, and at least 1 of these samples contained an inactivating exonic deletion resulting in complete loss of function. These data indicate that methylation of the residual allele contributes significantly to the inactivation of UTX along with interstitial deletions and mutations. We will go on to present data on the interaction of UTX with variation at the UTY locus and how this modulates behaviour of the myeloma clone. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document