scholarly journals Accelerating long-read analysis on modern CPUs

2021 ◽  
Author(s):  
Saurabh Kalikar ◽  
Chirag Jain ◽  
Vasimuddin Md ◽  
Sanchit Misra

Long read sequencing is now routinely used at scale for genomics and transcriptomics applications. Mapping of long reads or a draft genome assembly to a reference sequence is often one of the most time consuming steps in these applications. Here, we present techniques to accelerate minimap2, a widely used software for mapping. We present multiple optimizations using SIMD parallelization, efficient cache utilization and a learned index data structure to accelerate its three main computational modules, i.e., seeding, chaining and pairwise sequence alignment. These result in reduction of end-to-end mapping time of minimap2 by up to 3.5x while maintaining identical output.

2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 401
Author(s):  
Jon Bråte ◽  
Janina Fuss ◽  
Kjetill S. Jakobsen ◽  
Dag Klaveness

Hydrurus foetidus is a freshwater alga belonging to the phylum Heterokonta. It thrives in cold rivers in polar and high alpine regions. It has several morphological traits reminiscent of single-celled eukaryotes, but can also form macroscopic thalli. Despite its ability to produce polyunsaturated fatty acids, its life under cold conditions and its variable morphology, very little is known about its genome and transcriptome. Here, we present an extensive set of next-generation sequencing data, including genomic short reads from Illumina sequencing and long reads from Nanopore sequencing, as well as full length cDNAs from PacBio IsoSeq sequencing and a small RNA dataset (smaller than 200 bp) sequenced with Illumina. We combined this data with, to our knowledge, the first draft genome assembly of a chrysophyte algae. The assembly consists of 5069 contigs to a total assembly size of 171 Mb and a 77% BUSCO completeness. The new data generated here may contribute to a better understanding of the evolution and ecological roles of chrysophyte algae, as well as to resolve the branching patterns within the Heterokonta.


2021 ◽  
Author(s):  
Thomas W Woehner ◽  
Ofere Francis Emeriewen ◽  
Alexander Wittenberg ◽  
Harrie Schneiders ◽  
Ilse Vrijenhoek ◽  
...  

Background: Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall. is one ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. Finding: The final assemblies obtained from 117.3 Gb cleaned reads representing 97x coverage of expected 1.2 Gb tetraploid (2n=4x=32) and 0.3 Gb haploid (1n=8) genome sequence of P. fruticosa were calculated. The N50 contig length ranged between 0.3 and 0.5 Mb with the longest contig being ~6 Mb. BUSCO estimated a completeness between 98.7 % for the 4n and 96.1 % for the 1n datasets. Using a homology and reference based scaffolding method, we generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The repeat content was estimated to ~190 Mb (52 %) and 58,880 protein-coding genes were annotated. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. Conclusion: This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Stewart T. G. Burgess ◽  
Kathryn Bartley ◽  
Francesca Nunn ◽  
Harry W. Wright ◽  
Margaret Hughes ◽  
...  

The poultry red mite, Dermanyssus gallinae, is a major worldwide concern in the egg-laying industry. Here, we report the first draft genome assembly and gene prediction of Dermanyssus gallinae, based on combined PacBio and MinION long-read de novo sequencing.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lauren Coombe ◽  
Janet X. Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Abstract Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves upon human assemblies in under five hours using less than 23 GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


Gene ◽  
2021 ◽  
pp. 145748
Author(s):  
Vishal Singh Somvanshi ◽  
Manoranjan Dash ◽  
Chaitra G. Bhat ◽  
Roli Budhwar ◽  
Jeffrey Godwin ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Bhavani Manivannan ◽  
Niranjana Mahalingam ◽  
Sudhir Jadhao ◽  
Amrita Mishra ◽  
Pravin Nilawe ◽  
...  

We present the draft genome assembly of an extensively drug-resistant (XDR) Pseudomonas aeruginosa strain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance.


2012 ◽  
Vol 71 (6) ◽  
pp. 895-906 ◽  
Author(s):  
Luming Yang ◽  
Dal-Hoe Koo ◽  
Yuhong Li ◽  
Xuejiao Zhang ◽  
Feishi Luan ◽  
...  

2021 ◽  
Author(s):  
Zhijin Liu ◽  
Xuekun Qian ◽  
Ziming Wang ◽  
Huamei Wen ◽  
Ling Han ◽  
...  

Abstract BcakgroundLoaches of the superfamily Cobitoidea (Cypriniformes, Nemacheilidae) are small elongated bottom-dwelling freshwater fishes with several barbels near the mouth. The genus Oreonectes with 18 currently recognized species contains representatives for all three key stages of the evolutionary process (a surface-dwelling lifestyle, facultative cave persistence, and permanent cave dwelling). Some Oreonectes species show typical cave dwelling-related traits, such as partial or complete leucism and regression of the eyes, rendering them as suitable study objects of micro-evolution. Genome information of Oreonectes species is therefore an indispensable resource for research into the evolution of cavefishes.ResultsHere we assembled the genome sequence of O. shuilongensis, a surface-dwelling species, using an integrated approach that combined PacBio single-molecule real-time sequencing and Illumina X-ten paired-end sequencing. Based on in total 50.9 Gb of sequencing data, our genome assembly from Canu and Pilon spans approximately 515.64 Mb (estimated coverage of 100 ×), containing 803 contigs with N50 values of 5.58 Mb. 25,247 protein-coding genes were predicted, of which 95.65% have been functionally annotated. We also performed genome re-sequencing of three additional cave-dwelling Oreonectes fishes. Twenty-nine pseudogenes annotated using DAVID showed significant enrichment for the GO terms of “eye development” and “retina development in camera-type eye”. It is presumed that these pseudogenes might lead to eye degeneration of semi/complete cave-dwelling Oreonectes species. Furthermore, Mc1r (melanocortin-1 receptor) is a pseudogenization by a deletion in O. daqikongensis, likely blocking biosynthesis of melanin and leading to the albino phenotype.ConclusionsWe here report the first draft genome assembly of Oreonectes fishes, which is also the first genome reference for Cobitidea fishes. Pseudogenization of genes related to body color and eye development may be responsible for loss of pigmentation and vision deterioration in cave-dwelling species. This genome assembly will contribute to the study of the evolution and adaptation of fishes within Oreonectes and beyond (Cobitidea).


2021 ◽  
Author(s):  
Roger Huerlimann ◽  
Jeff A Cowley ◽  
Nicholas M Wade ◽  
Yinan Wang ◽  
Naga Kasinadhuni ◽  
...  

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements (EVEs) have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such EVEs and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of EVEs. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for one generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific EVEs identified an element comprised of a 9,045 bp stretch of repeated, inverted and jumbled genome fragments of Infectious hypodermal and hematopoietic necrosis virus (IHHNV) bounded by a repeated 591/590 bp host sequence. As only near complete linear ~4 kb IHHNV genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear EVE types. The existence of conjoined inverted IHHNV genome fragments also provides a means by which hairpin dsRNAs could be expressed and processed by the shrimp RNA interference (RNAi) machinery.


Sign in / Sign up

Export Citation Format

Share Document