scholarly journals Mutations in two SARS-CoV-2 variants of concern reflect two distinct strategies of antibody escape

2021 ◽  
Author(s):  
Sebastian Fiedler ◽  
Viola Denninger ◽  
Alexey S. Morgunov ◽  
Alison Ilsley ◽  
Roland Worth ◽  
...  

Understanding the factors that contribute to antibody escape of SARS-CoV-2 and its variants is key for the development of drugs and vaccines that provide broad protection against a variety of virus variants. Using microfluidic diffusional sizing, we determined the dissociation constant ((KD)) for the interaction between receptor binding domains (RBDs) of SARS-CoV-2 in its original version (WT) as well as alpha and beta variants with the host-cell receptor angiotensin converting enzyme 2 (ACE2). For RBD-alpha, the ACE2-binding affinity was increased by a factor of ten when compared with RBD-WT, while ACE2-binding of RBD-beta was largely unaffected. However, when challenged with a neutralizing antibody that binds to both RBD-WT and RBD-alpha with low nanomolar (KD) values, RBD-beta displayed no binding, suggesting a substantial epitope change. In SARS-CoV-2 convalescent sera, RBD-binding antibodies showed low nanomolar affinities to both wild-type and variant RBD proteins—strikingly, the concentration of antibodies binding to RBD-beta was half that of RBD-WT and RBD-alpha, again indicating considerable epitope changes in the beta variant. Our data therefore suggests that one factor contributing to the higher transmissibility and antibody evasion of SARS-CoV-2 alpha and beta is a larger fraction of viruses that can form a complex with ACE2. However, the two variants employ different mechanisms to achieve this goal. While SARS-CoV-2 alpha RBD binds with greater affinity to ACE2 and is thus more difficult to displace from the receptor by neutralizing antibodies, RBD-beta is less accessible to antibodies due to epitope changes which increases the chances of ACE2-binding and infection.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 770 ◽  
Author(s):  
K. J. Senthil Kumar ◽  
M. Gokila Vani ◽  
Chung-Shuan Wang ◽  
Chia-Chi Chen ◽  
Yu-Chien Chen ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease-2019 (COVID-19), is a pandemic disease that has been declared as modern history’s gravest health emergency worldwide. Until now, no precise treatment modality has been developed. The angiotensin-converting enzyme 2 (ACE2) receptor, a host cell receptor, has been found to play a crucial role in virus cell entry; therefore, ACE2 blockers can be a potential target for anti-viral intervention. In this study, we evaluated the ACE2 inhibitory effects of 10 essential oils. Among them, geranium and lemon oils displayed significant ACE2 inhibitory effects in epithelial cells. In addition, immunoblotting and qPCR analysis also confirmed that geranium and lemon oils possess potent ACE2 inhibitory effects. Furthermore, the gas chromatography-mass spectrometry (GC–MS) analysis displayed 22 compounds in geranium oil and 9 compounds in lemon oil. Citronellol, geraniol, and neryl acetate were the major compounds of geranium oil and limonene that represented major compound of lemon oil. Next, we found that treatment with citronellol and limonene significantly downregulated ACE2 expression in epithelial cells. The results suggest that geranium and lemon essential oils and their derivative compounds are valuable natural anti-viral agents that may contribute to the prevention of the invasion of SARS-CoV-2/COVID-19 into the human body.


Author(s):  
Pei-Hui Wang ◽  
Yun Cheng

AbstractThe ongoing outbreak of a new coronavirus (2019-nCoV) causes an epidemic of acute respiratory syndrome in humans. 2019-nCoV rapidly spread to national regions and multiple other countries, thus, pose a serious threat to public health. Recent studies show that spike (S) proteins of 2019-nCoV and SARS-CoV may use the same host cell receptor called angiotensin-converting enzyme 2 (ACE2) for entering into host cells. The affinity between ACE2 and 2019-nCoV S is much higher than ACE2 binding to SARS-CoV S protein, explaining that why 2019-nCoV seems to be more readily transmitted from the human to human. Here, we reported that ACE2 can be significantly upregulated after infection of various viruses including SARS-CoV and MERS-CoV. Basing on findings here, we propose that coronavirus infection can positively induce its cellular entry receptor to accelerate their replication and spread, thus drugs targeting ACE2 expression may be prepared for the future emerging infectious diseases caused by this cluster of viruses.


2020 ◽  
Author(s):  
S. Polydorides ◽  
G. Archontis

ABSTRACTThe coronavirus SARS-CoV-2, that is responsible for the COVID-19 pandemic, and the closely related SARS-CoV coronavirus enter cells by binding at the human angiotensin converting enzyme 2 (hACE2). The stronger hACE2 affinity of SARS-CoV-2 has been connected with its higher infectivity. In this work, we study hACE2 complexes with the receptor binding domains (RBDs) of the human SARS-CoV-2 and human SARS-CoV viruses, using all-atom molecular dynamics (MD) simulations and Computational Protein Design (CPD) with a physics-based energy function. The MD simulations identify charge-modifying substitutions between the CoV-2 and CoV RBDs, which either increase or decrease the hACE2 affinity of the SARS-CoV-2 RBD. The combined effect of these mutations is small, and the relative affinity is mainly determined by substitutions at residues in contact with hACE2. Many of these findings are in line and interpret recent experiments. Our CPD calculations redesign positions 455, 493, 494 and 501 of the SARS-CoV-2 RBM, which contact hACE2 in the complex and are important for ACE2 recognition. Sampling is enhanced by an adaptive importance sampling Monte Carlo method. Sequences with increased affinity replace CoV-2 glutamine by a negative residue at position 493, and serine by nonpolar, aromatic or a threonine at position 494. Substitutions at positions positions 455 and 501 have a smaller effect on affinity. Substitutions suggested by our design are seen in viral sequences encountered in other species, including bat and pangolin. Our results might be used to identify potential virus strains with higher human infectivity and assist in the design of peptide-based or peptidomimetic compounds with the potential to inhibit SARS-CoV-2 binding at hACE2.SIGNIFICANCEThe coronavirus SARS-CoV-2 is responsible for the current COVID-19 pandemic. SARS-CoV-2 and the earlier, closely related SARS-CoV virus bind at the human angiotensin converting enzyme 2 (hACE2) receptor at the cell surface. The higher human infectivity of SARS-CoV-2 may be linked to its stronger affinity for hACE2. Here, we study by computational methods complexes of hACE2 with the receptor binding domains (RBDs) of viruses SARS-CoV-2 and SARS-CoV. We identify residues affecting the affinities of the two domains for hACE2. We also propose mutations at key SARS-CoV-2 positions, which might enhance hACE2 affinity. Such mutations may appear in viral strains with increased human infectivity and might assist the design of peptide-based compounds that inhibit infection of human cells by SARS-CoV-2.


2021 ◽  
Vol 9 (8) ◽  
pp. 1692
Author(s):  
Rui Rodrigues ◽  
Sofia Costa de Oliveira

Angiotensin-Converting Enzyme 2 (ACE2) has been proved to be the main host cell receptor for the binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the COVID-19 pandemic. The SARS-CoV-2 spike (S) protein binds to ACE2 to initiate the process of replication. This enzyme is widely present in human organ tissues, such as the heart and lung. The pathophysiology of ACE2 in SARS-CoV-2 infection is complex and may be associated with several factors and conditions that are more severe in COVID-19 patients, such as age, male gender, and comorbidities, namely, cardiovascular diseases, chronic respiratory diseases, obesity, and diabetes. Here we present a comprehensive review that aims to correlate the levels of expression of the ACE2 in patients with comorbidities and with a poor outcome in COVID-19 disease. Significantly higher levels of expression of ACE2 were observed in myocardial and lung tissues in heart failure and COPD patients, respectively. An age-dependent increase in SARS2-CoV-2 receptors in the respiratory epithelium may be also responsible for the increased severity of COVID-19 lung disease in elderly people. Although the role of ACE2 is highlighted regarding the damage that can arise upon the SARS-CoV-2 invasion, there was no association observed between renin-angiotensin-aldosterone system (RAAS) inhibitors and the severity of COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 930
Author(s):  
Elena Quinonez ◽  
Majid Vahed ◽  
Abdolrazagh Hashemi Shahraki ◽  
Mehdi Mirsaeidi

Background: little is known about the forecasting of new variants of SARS-COV-2 in North America and the interaction of variants with vaccine-derived neutralizing antibodies. Methods: the affinity scores of the spike receptor-binding domain (S-RBD) of B.1.1.7, B. 1.351, B.1.617, and P.1 variants in interaction with the neutralizing antibody (CV30 isolated from a patient), and human angiotensin-converting enzyme 2 (hACE2) receptor were predicted using the template-based computational modeling. From the Nextstrain global database, we identified prevalent mutations of S-RBD of SARS-CoV-2 from December 2019 to April 2021. Pre- and post-vaccination time series forecasting models were developed based on the prediction of neutralizing antibody affinity scores for S-RBD of the variants. Results: the proportion of the B.1.1.7 variant in North America is growing rapidly, but the rate will reduce due to high affinity (~90%) to the neutralizing antibody once herd immunity is reached. Currently, the rates of isolation of B. 1.351, B.1.617, and P.1 variants are slowly increasing in North America. Herd immunity is able to relatively control these variants due to their low affinity (~70%) to the neutralizing antibody. The S-RBD of B.1.617 has a 110% increased affinity score to the human angiotensin-converting enzyme 2 (hACE2) in comparison to the wild-type structure, making it highly infectious. Conclusion: The newly emerged B.1.351, B.1.617, and P.1 variants escape from vaccine-induced neutralizing immunity and continue circulating in North America in post- herd immunity era. Our study strongly suggests that a third dose of vaccine is urgently needed to cover novel variants with affinity scores (equal or less than 70%) to eliminate developing viral mutations and reduce transmission rates.


Author(s):  
Huihui Mou ◽  
Brian D. Quinlan ◽  
Haiyong Peng ◽  
Yan Guo ◽  
Shoujiao Peng ◽  
...  

SUMMARYThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat (R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.


Science ◽  
2020 ◽  
pp. eabe3255 ◽  
Author(s):  
Michael Schoof ◽  
Bryan Faust ◽  
Reuben A. Saunders ◽  
Smriti Sangwan ◽  
Veronica Rezelj ◽  
...  

The SARS-CoV-2 virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryogenic electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5906
Author(s):  
Sk. Sarif Hassan ◽  
Shinjini Ghosh ◽  
Diksha Attrish ◽  
Pabitra Pal Choudhury ◽  
Alaa A. A. Aljabali ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22–42, aa 79–84, and aa 330–393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


Sign in / Sign up

Export Citation Format

Share Document