scholarly journals Cortical actin flow activates an alpha-catenin clutch to assemble adherens junctions

2021 ◽  
Author(s):  
Ivar Noordstra ◽  
Mario Diez Hermoso ◽  
Lilian Schimmel ◽  
Alexis Bonfim-Melo ◽  
Joseph Mathew Kalappurakkal ◽  
...  

Adherens junctions (AJs) fundamentally mediate cell-cell adhesion, yet the mechanisms that determine where or when AJs assemble are not understood. Here we reveal a mechanosensitive clutch that initiates AJ assembly. Before cell-cell contact, alpha-catenin couples surface E-cadherin complexes to retrograde flow of the actin cortex. Cortical flows with opposed orientations persist after contact, applying tension to alpha-catenin within trans-ligated cadherin complexes. Tension unfolds the alpha-catenin actin-binding domain (ABD), which is expected to mediate a catch bond with F-actin. However, catch bond behaviour is not sufficient for AJ assembly in a molecular clutch model. Instead, it is also necessary for the activated ABD to promote cis-clustering of E-cadherin molecules by bundling F-actin. Thus, this alpha-catenin clutch transduces the mechanical signal of cortical flow to assemble AJs.

2015 ◽  
Vol 210 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Pierre-Olivier Strale ◽  
Laurence Duchesne ◽  
Grégoire Peyret ◽  
Lorraine Montel ◽  
Thao Nguyen ◽  
...  

Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity.


1997 ◽  
Vol 139 (5) ◽  
pp. 1255-1269 ◽  
Author(s):  
Kersi N. Pestonjamasp ◽  
Robert K. Pope ◽  
Julia D. Wulfkuhle ◽  
Elizabeth J. Luna

Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGE–purified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cell–cell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions “rings.” At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, “supervillin.” We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments.


2000 ◽  
Vol 113 (10) ◽  
pp. 1803-1811
Author(s):  
Y. Hanakawa ◽  
M. Amagai ◽  
Y. Shirakata ◽  
K. Sayama ◽  
K. Hashimoto

Desmosomes contain two types of cadherin: desmocollin (Dsc) and desmoglein (Dsg). In this study, we examined the different roles that Dsc and Dsg play in the formation of desmosomes, by using dominant-negative mutants. We constructed recombinant adenoviruses (Ad) containing truncated mutants of E-cadherin, desmocollin 3a, and desmoglein 3 lacking a large part of their extracellular domains (EcaddeltaEC, Dsc3adeltaEC, Dsg3deltaEC), using the Cre-loxP Ad system to circumvent the problem of the toxicity of the mutants to virus-producing cells. When Dsc3adeltaEC Ad-infected HaCaT cells were cultured with high levels of calcium, E-cadherin and beta-catenin, which are marker molecules for the adherens junction, disappeared from the cell-cell contact sites, and cell-cell adhesion was disrupted. This also occurred in the cells infected with EcaddeltaEC Ad. With Dsg3deltaEC Ad infection, keratin insertion at the cell-cell contact sites was inhibited and desmoplakin, a marker of desmosomes, was stained in perinuclear dots while the adherens junctions remained intact. Dsc3adeltaEC Ad inhibited the induction of adherens junctions and the subsequent formation of desmosomes with the calcium shift, while Dsg3deltaEC Ad only inhibited the formation of desmosomes. To further determine whether Dsc3adeltaEC directly affected adherens junctions, mouse fibroblast L cells transfected with E-cadherin (LEC5) were infected with these mutant Ads. Both Dsc3adeltaEC and EcaddeltaEC inhibited the cell-cell adhesion of LEC5 cells, as determined by the cell aggregation assay, while Dsg3deltaEC did not. These results indicate that the dominant negative effects of Dsg3deltaEC were restricted to desmosomes, while those of Dsc3adeltaEC were observed in both desmosomes and adherens junctions. Furthermore, the cytoplasmic domain of Dsc3adeltaEC coprecipitated both plakoglobin and beta-catenin in HaCaT cells. In addition, beta-catenin was found to bind the endogenous Dsc in HaCaT cells. These findings lead us to speculate that Dsc interacts with components of the adherens junctions through beta-catenin, and plays a role in nucleating desmosomes after the adherens junctions have been established.


2004 ◽  
Vol 15 (3) ◽  
pp. 1065-1076 ◽  
Author(s):  
Jun Noritake ◽  
Masaki Fukata ◽  
Kazumasa Sato ◽  
Masato Nakagawa ◽  
Takashi Watanabe ◽  
...  

The small guanosine triphosphatase Rac1 is activated by E-cadherin-mediated cell-cell adhesion and is required for the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact. However, the modes of activation and action of Rac1 remain to be clarified. We here found that suppression of IQGAP1, an actin-binding protein and an effector of Rac1, by small interfering RNA apparently reduced the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact in Madin-Darby canine kidney II epithelial cells under the conditions in which knockdown of Rac1 reduced them. Knockdown of Rac1 did not affect the localization of these junctional components in cells expressing a constitutively active IQGAP1 mutant defective in Rac1/Cdc42 binding. Knockdown of either Rac1 or IQGAP1 accelerated the 12-O-tetradecanoylphorbol-13-acetate-induced cell-cell dissociation. The basal Rac1 activity, which was maintained by E-cadherin-mediated cell-cell adhesion, was inhibited in the IQGAP1-knocked down cells, whereas the Rac1 activity was increased in the cells overexpressing IQGAP1. Together, these results indicate that Rac1 enhances the accumulation of actin filaments, E-cadherin, and β-catenin by acting on IQGAP1 and suggest that there exists a positive feedback loop comprised of “E-cadherin-mediated cell-cell adhesion→Rac1 activation→actin-meshwork formation by IQGAP1→increasing E-cadherin-mediated cell-cell adhesion.”


2009 ◽  
Vol 20 (7) ◽  
pp. 1949-1959 ◽  
Author(s):  
Koichi Miura ◽  
Jin-Min Nam ◽  
Chie Kojima ◽  
Naoki Mochizuki ◽  
Hisataka Sabe

ADP-ribosylation factor (Arf) 6 activity is crucially involved in the regulation of E-cadherin–based cell–cell adhesions. Erythropoietin-producing hepatocellular carcinoma (Eph)-family receptors recognize ligands, namely, ephrins, anchored to the membrane of apposing cells, and they mediate cell–cell contact-dependent events. Here, we found that Arf6 activity is down-regulated in Madin-Darby canine kidney cells, which is dependent on cell density and calcium ion concentration, and we provide evidence of a novel signaling pathway by which ligand-activated EphA2 suppresses Arf6 activity. This EphA2-mediated suppression of Arf6 activity was linked to the induction of cell compaction and polarization, but it was independent of the down-regulation of extracellular signal-regulated kinase 1/2 kinase activity. We show that G protein-coupled receptor kinase-interacting protein (Git) 1 and noncatalytic region of tyrosine kinase (Nck) 1 are involved in this pathway, in which ligand-activated EphA2, via its phosphorylated Tyr594, binds to the Src homology 2 domain of Nck1, and then via its Src homology 3 domain binds to the synaptic localizing domain of Git1 to suppress Arf6 activity. We propose a positive feedback loop in which E-cadherin–based cell–cell contacts enhance EphA-ephrinA signaling, which in turn down-regulates Arf6 activity to enhance E-cadherin–based cell–cell contacts as well as the apical-basal polarization of epithelial cells.


2001 ◽  
Vol 114 (24) ◽  
pp. 4349-4358 ◽  
Author(s):  
Juliet C. Coates ◽  
Adrian J. Harwood

The development of the non-metazoan eukaryote Dictyostelium discoideum displays many of the features of animal embryogenesis, including regulated cell-cell adhesion. During early development, two proteins, DdCAD-1 and csA, mediate cell-cell adhesion between amoebae as they form a loosely packed multicellular mass. The mechanism governing this process is similar to epithelial sheet sealing in animals. Although cell differentiation can occur in the absence of cell contact, regulated cell-cell adhesion is an important component of Dictyostelium morphogenesis, and a third adhesion molecule, gp150, is required for multicellular development past the aggregation stage.Cell-cell junctions that appear to be adherens junctions form during the late stages of Dictyostelium development. Although they are not essential to establish the basic multicellular body plan, these junctions are required to maintain the structural integrity of the fruiting body. The Dictyostelium β-catenin homologue Aardvark (Aar) is present in adherens junctions, which are lost in its absence. As in the case of its metazoan counterparts, Aar also has a function in cell signalling and regulates expression of the pre-spore gene psA.It is becoming clear that cell-cell adhesion is an integral part of Dictyostelium development. As in animals, cell adhesion molecules have a mechanical function and may also interact with the signal-transduction processes governing morphogenesis.


2020 ◽  
Vol 219 (5) ◽  
Author(s):  
Shotaro Sakakibara ◽  
Kiyohito Mizutani ◽  
Ayumu Sugiura ◽  
Ayuko Sakane ◽  
Takuya Sasaki ◽  
...  

Actomyosin-undercoated adherens junctions are critical for epithelial cell integrity and remodeling. Actomyosin associates with adherens junctions through αE-catenin complexed with β-catenin and E-cadherin in vivo; however, in vitro biochemical studies in solution showed that αE-catenin complexed with β-catenin binds to F-actin less efficiently than αE-catenin that is not complexed with β-catenin. Although a “catch-bond model” partly explains this inconsistency, the mechanism for this inconsistency between the in vivo and in vitro results remains elusive. We herein demonstrate that afadin binds to αE-catenin complexed with β-catenin and enhances its F-actin–binding activity in a novel mechanism, eventually inducing the proper actomyosin organization through αE-catenin complexed with β-catenin and E-cadherin at adherens junctions.


1992 ◽  
Vol 116 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D A Wollner ◽  
K A Krzeminski ◽  
W J Nelson

The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.


2017 ◽  
Vol 114 (29) ◽  
pp. E5835-E5844 ◽  
Author(s):  
Caitlin Collins ◽  
Aleksandra K. Denisin ◽  
Beth L. Pruitt ◽  
W. James Nelson

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion.


2003 ◽  
Vol 14 (4) ◽  
pp. 1597-1609 ◽  
Author(s):  
Yoshinari Tanaka ◽  
Hiroyuki Nakanishi ◽  
Shigeki Kakunaga ◽  
Noriko Okabe ◽  
Tomomi Kawakatsu ◽  
...  

E-Cadherin is a Ca2+-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca2+-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin–based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin–based AJs in keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document