scholarly journals Carbon nanotube biocompatibility in plants is determined by their surface chemistry

2021 ◽  
Author(s):  
Eduardo González-Grandío ◽  
Gözde Sultan Demirer ◽  
Christopher Tonnu Jackson ◽  
Darwin Yang ◽  
Markita P Landry

Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. Herein, we characterize Arabidopsis thaliana transcriptional response to single walled carbon nanotubes (SWNTs) with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Eduardo González-Grandío ◽  
Gözde S. Demirer ◽  
Christopher T. Jackson ◽  
Darwin Yang ◽  
Sophia Ebert ◽  
...  

Abstract Background Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. Results Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. Conclusions While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement. Graphical Abstract


2012 ◽  
Vol 66 (1) ◽  
pp. 64-67 ◽  
Author(s):  
Raquel P. Rocha ◽  
Adrián M.T. Silva ◽  
Goran Dražić ◽  
Manuel F.R. Pereira ◽  
José L. Figueiredo

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Youlian Goulev ◽  
Sandrine Morlot ◽  
Audrey Matifas ◽  
Bo Huang ◽  
Mikael Molin ◽  
...  

Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 142 ◽  
Author(s):  
Cinzia Bottino ◽  
Alessia Peserico ◽  
Cristiano Simone ◽  
Giuseppina Caretti

SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.


2014 ◽  
Vol 16 (24) ◽  
pp. 12237-12250 ◽  
Author(s):  
Sergio Morales-Torres ◽  
Tânia L. S. Silva ◽  
Luisa M. Pastrana-Martínez ◽  
Ana T. S. C. Brandão ◽  
José L. Figueiredo ◽  
...  

Buckypapers prepared using CNTs with tailored surface chemistry showed better performance than the commercial PTFE in membrane distillation of salty water.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Jeffery L. Coffer

Abstract:This review provides an overview of selected recent research efforts that employ the use of mesoporous nanotubes in a biomaterial context, e.g. principally as a therapeutic or biosensing platform. We focus on the compositions of alumina, boron nitride, silica, silicon, titania, and zinc oxide, along with selected accounts involving single-walled carbon nanotubes. Where known, attention is directed toward the biodegradability and biocompatibility of a given nanotube type, its tunability of size and surface chemistry, and relevance of these parameters to its function as a biomaterial.


2019 ◽  
Author(s):  
William Renthal ◽  
Ivan Tochitsky ◽  
Lite Yang ◽  
Yung-Chih Cheng ◽  
Emmy Li ◽  
...  

SummaryPrimary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By transcriptionally profiling sensory ganglia at single-cell resolution, we find that different somatosensory neuronal subtypes undergo a remarkably consistent and dramatic transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. Successful axonal regeneration leads to a restoration of neuronal cell identity and the deactivation of the growth program. This injury-induced transcriptional reprogramming requires Atf3, a transcription factor which is induced rapidly after injury and is necessary for axonal regeneration and functional recovery. While Atf3 and other injury-induced transcription factors are known for their role in reprogramming cell fate, their function in mature neurons is likely to facilitate major adaptive changes in cell function in response to damaging environmental stimuli.


2020 ◽  
Vol 21 (12) ◽  
pp. 4338 ◽  
Author(s):  
Anna Kloska ◽  
Grzegorz M. Cech ◽  
Marta Sadowska ◽  
Klaudyna Krause ◽  
Agnieszka Szalewska-Pałasz ◽  
...  

Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.


Sign in / Sign up

Export Citation Format

Share Document