scholarly journals Transcranial magnetic stimulation of the occipital cortex interferes with foot movements in blind individuals

2021 ◽  
Author(s):  
Tsuyoshi Ikegami ◽  
Masaya Hirashima ◽  
Eiichi Naito ◽  
Satoshi Hirose

Plasticity after visual loss is a remarkable characteristic of the brain. Previous studies in blind individuals have shown that the occipital cortex, which corresponds to the visual cortex in sighted individuals, can be reorganized and repurposed for nonvisual perception and cognitive functions. To our knowledge, however, no studies have directly examined its involvement in motor production. Here we show that a rhythmic foot movement performed by acquired blind participants can be disrupted by transcranial magnetic stimulation (TMS) to their primary and secondary visual cortex (V1/V2). Variability of this foot movement increased when we applied TMS to the acquired blind participants. This effect of TMS was absent for both sighted and congenitally blind participants. These results suggest that the visual cortex of blind individuals is involved in motor production, but its involvement requires prior visual experience. Our finding indicates that functional repurposing of the visual cortex may not be restricted to perception and cognitive functions, but also extended to motor function. Motor function may emerge in the visual cortex of blind individuals as a consequence of the reorganization of the visuomotor network, which has been developed before visual loss.

2018 ◽  
Author(s):  
Theo Marins ◽  
Maite Russo ◽  
Erika Rodrigues ◽  
jorge Moll ◽  
Daniel Felix ◽  
...  

ABSTRACTEvidence of cross-modal plasticity in blind individuals has been reported over the past decades showing that non-visual information is carried and processed by classical “visual” brain structures. This feature of the blind brain makes it a pivotal model to explore the limits and mechanisms of brain plasticity. However, despite recent efforts, the structural underpinnings that could explain cross-modal plasticity in congenitally blind individuals remain unclear. Using advanced neuroimaging techniques, we mapped the thalamocortical connectivity and assessed cortical thickness and integrity of white matter of congenitally blind individuals and sighted controls to test the hypothesis that aberrant thalamocortical pattern of connectivity can pave the way for cross-modal plasticity. We described a direct occipital takeover by the temporal projections from the thalamus, which would carry non-visual information (e.g. auditory) to the visual cortex in congenitally blinds. In addition, the amount of thalamo-occipital connectivity correlated with the cortical thickness of primary visual cortex (V1), supporting a probably common (or related) reorganization phenomena. Our results suggest that aberrant thalamocortical connectivity as one possible mechanism of cross-modal plasticity in blinds, with potential impact on cortical thickness of V1.SIGNIFICANT STATEMENTCongenitally blind individuals often develop greater abilities on spared sensory modalities, such as increased acuity in auditory discrimination and voice recognition, when compared to sighted controls. These functional gains have been shown to rely on ‘visual’ cortical areas of the blind brain, characterizing the phenomenon of cross-modal plasticity. However, its anatomical underpinnings in humans have been unsuccessfully pursued for decades. Recent advances of non-invasive neuroimaging techniques allowed us to test the hypothesis of abnormal thalamocortical connectivity in congenitally blinds. Our results showed an expansion of the thalamic connections to the temporal cortex over those that project to the occipital cortex, which may explain, the cross-talk between the visual and auditory systems in congenitally blind individuals.


Cephalalgia ◽  
2003 ◽  
Vol 23 (4) ◽  
pp. 264-270 ◽  
Author(s):  
V Bohotin ◽  
A Fumai ◽  
M Vandenheede ◽  
C Bohotin ◽  
J Schoenen

We used transcranial magnetic stimulation (TMS) with a figure-of-eight coil to excite motor and visual V1-V2 cortices in patients suffering from migraine without (MO) ( n = 24) or with aura (MA) ( n = 13) and in healthy volunteers (HV) ( n = 33). Patients who had a migraine attack within 3 days before or after the recordings were excluded. All females were recorded at mid-cycle. Single TMS pulses over the occipital cortex elicited phosphenes in 64% of HV, 63% of MO and 69% of MA patients. Compared with HV, the phosphene threshold was significantly increased in MO ( P = 0.001) and in MA ( P = 0.007), but there was no difference between the two groups of migraineurs. The motor threshold tended to be higher in both migraine groups than in HV, but the differences were not significant. In conclusion, this study shows that two-thirds (64.86%) of patients affected by either migraine type present an increased phosphene threshold in the interictal period, which suggests that their visual cortex is hypoexcitable.


2017 ◽  
Vol 29 (7) ◽  
pp. 1226-1238 ◽  
Author(s):  
Amanda E. van Lamsweerde ◽  
Jeffrey S. Johnson

Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2020 ◽  
Vol 22 ◽  
pp. 100183
Author(s):  
Mehmet Diyaddin Güleken ◽  
Taner Akbaş ◽  
Selime Çelik Erden ◽  
Veysel Akansel ◽  
Zeliha Cengiz Al ◽  
...  

Neuroreport ◽  
1999 ◽  
Vol 10 (12) ◽  
pp. 2631-2634 ◽  
Author(s):  
Erik Corthout ◽  
Bob Uttl ◽  
Vincent Walsh ◽  
Mark Hallett ◽  
Alan Cowey

2015 ◽  
Vol 27 (8) ◽  
pp. 1633-1647 ◽  
Author(s):  
Ben Deen ◽  
Rebecca Saxe ◽  
Marina Bedny

In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.


Sign in / Sign up

Export Citation Format

Share Document