scholarly journals Cleavage of histone H2A during embryonic stem cell differentiation destabilizes nucleosomes to counteract gene activation

2021 ◽  
Author(s):  
Mariel Coradin ◽  
Joseph Cesare ◽  
Yemin Lan ◽  
Zhexin Zhu ◽  
Peder J. Lund ◽  
...  

Histone proteolysis is a poorly understood phenomenon in which the N-terminal tails of histones are irreversibly cleaved by intracellular proteases. During development, histone post-translational modifications are known to orchestrate gene expression patterns that ultimately drive cell fate decisions. Therefore, deciphering the mechanisms of histone proteolysis is necessary to enhance the understanding of cellular differentiation. Here we show that H2A is cleaved by the lysosomal protease Cathepsin L during ESCs differentiation. Using quantitative mass spectrometry (MS), we identified L23 to be the primary cleavage site that gives rise to the clipped form of H2A (cH2A), which reaches a maximum level of ~1% of total H2A after four days of differentiation. Using ChIP-seq, we found that preventing proteolysis leads to an increase in acetylated H2A at promoter regions in differentiated ES cells. We also report the identification of novel readers of acetylated H2A in pluripotent ES cells, including members of the PBAF remodeling complex, which can recognize different acetylated forms of H2A. Finally, we show that H2A proteolysis abolishes this recognition. Altogether, our data suggests that proteolysis serves as an efficient mechanism to silence pluripotency genes and destabilize the nucleosome core particle.

BMC Genomics ◽  
2020 ◽  
Vol 21 (S10) ◽  
Author(s):  
Ah-Jung Jeon ◽  
Greg Tucker-Kellogg

Abstract Background Bivalent promoters marked with both H3K27me3 and H3K4me3 histone modifications are characteristic of poised promoters in embryonic stem (ES) cells. The model of poised promoters postulates that bivalent chromatin in ES cells is resolved to monovalency upon differntiation. With the availability of single-cell RNA sequencing (scRNA-seq) data, subsequent switches in transcriptional state at bivalent promoters can be studied more closely. Results We develop an approach for capturing genes undergoing transcriptional switching by detecting ‘bimodal’ gene expression patterns from scRNA-seq data. We integrate the identification of bimodal genes in ES cell differentiation with analysis of chromatin state, and identify clear cell-state dependent patterns of bimodal, bivalent genes. We show that binarization of bimodal genes can be used to identify differentially expressed genes from fractional ON/OFF proportions. In time series data from differentiating cells, we build a pseudotime approximation and use a hidden Markov model to infer gene activity switching pseudotimes, which we use to infer a regulatory network. We identify pathways of switching during differentiation, novel details of those pathway, and transcription factor coordination with downstream targets. Conclusions Genes with expression levels too low to be informative in conventional scRNA analysis can be used to infer transcriptional switching networks that connect transcriptional activity to chromatin state. Since chromatin bivalency is a hallmark of gene promoters poised for activity, this approach provides an alternative that complements conventional scRNA-seq analysis while focusing on genes near the ON/OFF boundary of activity. This offers a novel and productive means of inferring regulatory networks from scRNA-seq data.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haichao Wei ◽  
Xiaomin Dong ◽  
Yanan You ◽  
Bo Hai ◽  
Raquel Cuevas-Diaz Duran ◽  
...  

Abstract Background Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear. Results We performed an integrated study of genome-wide OLIG2 binding and the epigenetic modification status of both coding and non-coding genes during three stages of oligodendrocyte differentiation in vivo: neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), and newly formed oligodendrocytes (NFOs). We found that 613 lncRNAs have OLIG2 binding sites and are expressed in at least one cell type, which can potentially be activated or repressed by OLIG2. Forty-eight of them have increased expression in oligodendrocyte lineage cells. Predicting lncRNA functions by using a “guilt-by-association” approach revealed that the functions of these 48 lncRNAs were enriched in “oligodendrocyte development and differentiation.” Additionally, bivalent genes are known to play essential roles during embryonic stem cell differentiation. We identified bivalent genes in NSCs, OPCs, and NFOs and found that some bivalent genes bound by OLIG2 are dynamically regulated during oligodendrocyte development. Importantly, we unveiled a previously unknown mechanism that, in addition to transcriptional regulation via DNA binding, OLIG2 could self-regulate through the 3′ UTR of its own mRNA. Conclusions Our studies have revealed the missing links in the mechanisms regulating oligodendrocyte development at the transcriptional level and after transcription. The results of our research have improved the understanding of fundamental cell fate decisions during oligodendrocyte lineage formation, which can enable insights into demyelination diseases and regenerative medicine.


2021 ◽  
Author(s):  
Naoki Kubo ◽  
Rong Hu ◽  
Zhen Ye ◽  
Bing Ren

MLL3 (KMT2C) and MLL4 (KMT2D), the major mono-methyltransferases of histone H3 lysine 4 (H3K4), are required for cellular differentiation and embryonic development in mammals. We previously observed that MLL3/4 promote long-range chromatin interactions at enhancers, however, it is still unclear how their catalytic activities contribute to enhancer-dependent gene activation in mammalian cell differentiation. To address this question, we mapped histone modifications, long-range chromatin contacts as well as gene expression in MLL3/4 catalytically deficient mouse embryonic stem (ES) cells undergoing differentiation toward neural precursor cells. We showed that MLL3/4 activities are responsible for deposition of H3K4me1 modification and formation of long-range enhancer-promoter contacts at a majority of putative enhancers gained during cell differentiation, but are dispensable for most candidate enhancers found in undifferentiated ES cells that persist through differentiation. While transcriptional induction at most genes is unaltered in the MLL3/4 catalytically deficient cells, genes making more contacts with MLL3/4-dependent putative enhancers are disproportionately affected. These results support that MLL3/4 contributes to cellular differentiation through histone-methyltransferase-activity dependent induction of enhancer-promoter contacts and transcriptional activation at a subset of lineage-specific genes.


2018 ◽  
Author(s):  
Bharat Pokhrel ◽  
Yannic Chen ◽  
Jonathan Joseph Biro

AbstractCFP-1 (CXXC finger binding protein 1) is an evolutionarily conserved protein that binds to non-methylated CpG-rich promoters in humans andC. elegans. This conserved epigenetic regulator is a part of the COMPASS complex that contains the H3K4me3 methyltransferase SET1 in mammals and SET-2 inC. elegans. Previous studies have indicated the importance ofcfp-1in embryonic stem cell differentiation and cell fate specification. However, neither the function nor the mechanism of action ofcfp-1is well understood at the organismal level. To further investigate the function of CFP-1, we have characterisedC. elegansCOMPASS mutantscfp-1(tm6369)andset-2(bn129). We found that bothcfp-1andset-2play an important role in the regulation of fertility and development of the organism. Furthermore, we found that bothcfp-1andset-2are required for H3K4 trimethylation and play a repressive role in the expression of heat shock and salt-inducible genes. Interestingly, we found thatcfp-1but notset-2genetically interacts with Histone Deacetylase (HDAC1/2) complexes to regulate fertility, suggesting a function of CFP-1 outside of the COMPASS complex. Additionally we found thatcfp-1andset-2acts on a separate pathways to regulate fertility and development ofC. elegans. Our results suggest that CFP-1 genetically interacts with HDAC1/2 complexes to regulate fertility, independent of its function within COMPASS complex. We propose that CFP-1 could cooperate with COMPASS complex and/or HDAC1/2 in a context dependent manner.


2018 ◽  
Vol 115 (27) ◽  
pp. E6162-E6171 ◽  
Author(s):  
Yuan Gao ◽  
Haiyun Gan ◽  
Zhenkun Lou ◽  
Zhiguo Zhang

Bivalent chromatin domains containing repressive H3K27me3 and active H3K4me3 modifications are barriers for the expression of lineage-specific genes in ES cells and must be resolved for the transcription induction of these genes during differentiation, a process that remains largely unknown. Here, we show that Asf1a, a histone chaperone involved in nucleosome assembly and disassembly, regulates the resolution of bivalent domains and activation of lineage-specific genes during mouse ES cell differentiation. Deletion of Asf1a does not affect the silencing of pluripotent genes, but compromises the expression of lineage-specific genes during ES cell differentiation. Mechanistically, the Asf1a–histone interaction, but not the role of Asf1a in nucleosome assembly, is required for gene transcription. Asf1a is recruited to several bivalent promoters, partially through association with transcription factors, and mediates nucleosome disassembly during differentiation. We suggest that Asf1a-mediated nucleosome disassembly provides a means for resolution of bivalent domain barriers for induction of lineage-specific genes during differentiation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4599-4599
Author(s):  
Taisuke Kanaji ◽  
Takashi Okamura ◽  
Peter J. Newman

Abstract Abstract 4599 Filamin A is a major non-muscle actin binding protein that plays an important role in cross-linking cortical actin filaments into three-dimensional networks. In addition to its role as a cytoskeletal scaffolding molecule, Filamin A is also known to bind more than 30 other proteins, regulating their subcellular location and coordinating their ability to signal. To analyze the role of filamin A in mouse embryonic stem (ES) cell maturation, we generated filamin ALow ES cells by introducing a micro-RNA that specifically downregulates filamin A expression under the control of a cytomegalovirus promoter. Filamin ALow ES cells exhibited a more rounded morphology than did their wild-type filamin ANormal counterparts, and expressed increased levels of the ES cell transcription factor Nanog. In contrast, non-transfected cells in the same culture dish retained normal expression of filamin A, expressed low levels of Nanog, and exhibited a more elongated and spread phenotype characteristic of differentiating cells. Further evidence for a role for filamin A in ES cell differentiation was provided by the observation that withdrawing leukemia inhibitory factor (LIF) to induce ES cell differentiation was accompanied by increased expression of filamin A, a concomitant loss of Nanog expression, and acquisition of a differentiated morphology. Filamin ALow ES cells were able to retain their undifferentiated phenotype, as evaluated by alkaline phosphatase (Alp) activity, in the presence of a 10-fold lower concentration of LIF than was permissive for filamin ANormal ES cells, or following exposure to the differentiating agent, bone morphogenic protein 4 (BMP4). LIF-induced phosphorylation of ERK was decreased in filamin ALow relative to filamin ANormal ES cells, as was BMP-induced phosphorylation of Smad1/5 - two signaling pathways that initiate ES cell differentiation. Finally, embryoid bodies comprised of filamin ALow ES cells were unable to differentiate into CD41+ hematopoietic progenitor cells. Taken together, these data demonstrate that filamin A plays a previously unrecognized, but critical, scaffolding function that support both the LIF - ERK and BMP4 - Smad1/5 signaling pathways leading to ES and hematopoietic cell differentiation. Manipulation of filamin levels might be useful in the future to modulate the differentiation requirements for a variety of clinically-and therapeutically-useful stem cells. Disclosures: Newman: Novo Nordisk: Consultancy; New York Blood Center: Membership on an entity's Board of Directors or advisory committees.


2007 ◽  
Vol 27 (10) ◽  
pp. 3769-3779 ◽  
Author(s):  
Diego Pasini ◽  
Adrian P. Bracken ◽  
Jacob B. Hansen ◽  
Manuela Capillo ◽  
Kristian Helin

ABSTRACT Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos. Here, we demonstrate that Suz12 −/− mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12 −/− ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation-specific genes. Moreover, Suz12 −/− ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different mechanisms to regulate transcription during cellular differentiation.


2004 ◽  
Vol 359 (1446) ◽  
pp. 1009-1020 ◽  
Author(s):  
Patricia Murray ◽  
David Edgar

The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document