scholarly journals Protection against SARS-CoV-2 Beta Variant in mRNA-1273 Boosted Nonhuman Primates

2021 ◽  
Author(s):  
Kizzmekia S. Corbett ◽  
Matthew Gagne ◽  
Danielle Wagner ◽  
Sarah O'Connell ◽  
Sandeep R. Narpala ◽  
...  

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 μg of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.β (heterologous), which encompasses the spike sequence of the B.1.351 (beta or β) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the β variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost β-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the β variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations.

2020 ◽  
Vol 9 (1) ◽  
pp. 2091-2093 ◽  
Author(s):  
Pengfei Wang ◽  
Lihong Liu ◽  
Manoj S. Nair ◽  
Michael T. Yin ◽  
Yang Luo ◽  
...  

2020 ◽  
Vol 117 (36) ◽  
pp. 22341-22350 ◽  
Author(s):  
Deborah L. Burnett ◽  
Peter Schofield ◽  
David B. Langley ◽  
Jennifer Jackson ◽  
Katherine Bourne ◽  
...  

Conformational diversity and self-cross-reactivity of antigens have been correlated with evasion from neutralizing antibody responses. We utilized single cell B cell sequencing, biolayer interferometry and X-ray crystallography to trace mutation selection pathways where the antibody response must resolve cross-reactivity between foreign and self-proteins bearing near-identical contact surfaces, but differing in conformational flexibility. Recurring antibody mutation trajectories mediate long-range rearrangements of framework (FW) and complementarity determining regions (CDRs) that increase binding site conformational diversity. These antibody mutations decrease affinity for self-antigen 19-fold and increase foreign affinity 67-fold, to yield a more than 1,250-fold increase in binding discrimination. These results demonstrate how conformational diversity in antigen and antibody does not act as a barrier, as previously suggested, but rather facilitates high affinity and high discrimination between foreign and self.


2009 ◽  
Vol 137 (9) ◽  
pp. 1309-1318 ◽  
Author(s):  
M. T. HEISE ◽  
A. WHITMORE ◽  
J. THOMPSON ◽  
M. PARSONS ◽  
A. A. GROBBELAAR ◽  
...  

SUMMARYRift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus (genusPhlebovirus) associated with severe disease in livestock and fatal encephalitis or haemorrhagic fever in a proportion of infected humans. Although live attenuated and inactivated vaccines have been used in livestock, and on a limited scale in humans, there is a need for improved anti-RVFV vaccines. Towards this goal, Sindbis virus replicon vectors expressing the RVFV Gn and Gc glycoproteins, as well as the non-structural nsM protein, were constructed and evaluated for their ability to induce protective immune responses against RVFV. These replicon vectors were shown to produce the RVFV glycoproteins to high levelsin vitroand to induce systemic anti-RVFV antibody responses in immunized mice, as determined by RVFV-specific ELISA, fluorescent antibody tests, and demonstration of a neutralizing antibody response. Replicon vaccination also provided 100% protection against lethal RVFV challenge by either the intraperitoneal or intranasal route. Furthermore, preliminary results indicate that the replicon vectors elicit RVFV-specific neutralizing antibody responses in vaccinated sheep. These results suggest that alphavirus-based replicon vectors can induce protective immunity against RVFV, and that this approach merits further investigation into its potential utility as a RVFV vaccine.


2020 ◽  
Vol 26 (11) ◽  
pp. 1694-1700 ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Frank Wegmann ◽  
Amanda J. Martinot ◽  
Carolin Loos ◽  
Katherine McMahan ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1–4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5–7 and nonhuman primates8–10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11–13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


2004 ◽  
Vol 78 (17) ◽  
pp. 9190-9202 ◽  
Author(s):  
J. D. Trujillo ◽  
N. M. Kumpula-McWhirter ◽  
K. J. Hötzel ◽  
M. Gonzalez ◽  
W. P. Cheevers

ABSTRACT This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 μg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric H. Y. Lau ◽  
Owen T. Y. Tsang ◽  
David S. C. Hui ◽  
Mike Y. W. Kwan ◽  
Wai-hung Chan ◽  
...  

AbstractThe SARS-CoV-2 pandemic poses the greatest global public health challenge in a century. Neutralizing antibody is a correlate of protection and data on kinetics of virus neutralizing antibody responses are needed. We tested 293 sera from an observational cohort of 195 reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 infections collected from 0 to 209 days after onset of symptoms. Of 115 sera collected ≥61 days after onset of illness tested using plaque reduction neutralization (PRNT) assays, 99.1% remained seropositive for both 90% (PRNT90) and 50% (PRNT50) neutralization endpoints. We estimate that it takes at least 372, 416 and 133 days for PRNT50 titres to drop to the detection limit of a titre of 1:10 for severe, mild and asymptomatic patients, respectively. At day 90 after onset of symptoms (or initial RT-PCR detection in asymptomatic infections), it took 69, 87 and 31 days for PRNT50 antibody titres to decrease by half (T1/2) in severe, mild and asymptomatic infections, respectively. Patients with severe disease had higher peak PRNT90 and PRNT50 antibody titres than patients with mild or asymptomatic infections. Age did not appear to compromise antibody responses, even after accounting for severity. We conclude that SARS-CoV-2 infection elicits robust neutralizing antibody titres in most individuals.


2021 ◽  
Author(s):  
Eric D. Laing ◽  
Nusrat J. Epsi ◽  
Stephanie A. Richard ◽  
Emily C. Samuels ◽  
Wei Wang ◽  
...  

ABSTRACTImportanceThe persistence of SARS-CoV-2 antibodies may be a predictive correlate of protection for both natural infections and vaccinations. Identifying predictors of robust antibody responses is important to evaluate the risk of re-infection / vaccine failure and may be translatable to vaccine effectiveness.ObjectiveTo 1) determine the durability of anti-SARS-CoV-2 IgG and neutralizing antibodies in subjects who experienced mild and moderate to severe COVID-19, and 2) to evaluate the correlation of age and IgG responses to both endemic human seasonal coronaviruses (HCoVs) and SARS-CoV-2 according to infection outcome.DesignLongitudinal serum samples were collected from PCR-confirmed SARS-CoV-2 positive participants (U.S. active duty service members, dependents and military retirees, including a range of ages and demographics) who sought medical treatment at seven U.S. military hospitals from March 2020 to March 2021 and enrolled in a prospective observational cohort study.ResultsWe observed SARS-CoV-2 seropositivity in 100% of inpatients followed for six months (58/58) to one year (8/8), while we observed seroreversion in 5% (9/192) of outpatients six to ten months after symptom onset, and 18% (2/11) of outpatients followed for one year. Both outpatient and inpatient anti-SARS-CoV-2 binding-IgG responses had a half-life (T1/2) of >1000 days post-symptom onset. The magnitude of neutralizing antibodies (geometric mean titer, inpatients: 378 [246-580, 95% CI] versus outpatients: 83 [59-116, 95% CI]) and durability (inpatients: 65 [43-98, 95% CI] versus outpatients: 33 [26-40, 95% CI]) were associated with COVID-19 severity. Older age was a positive correlate with both higher IgG binding and neutralizing antibody levels when controlling for COVID-19 hospitalization status. We found no significant relationships between HCoV antibody responses and COVID-19 clinical outcomes, or the development of SARS-CoV-2 neutralizing antibodies.Conclusions and RelevanceThis study demonstrates that humoral responses to SARS-CoV-2 infection are robust on longer time-scales, including those arising from milder infections.However, the magnitude and durability of the antibody response after natural infection was lower and more variable in younger participants who did not require hospitalization for COVID-19. These findings support vaccination against SARS-CoV-2 in all suitable populations including those individuals that have recovered from natural infection.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1442
Author(s):  
Ruiqi Zhang ◽  
Ka-Wa Khong ◽  
Ka-Yi Leung ◽  
Danlei Liu ◽  
Yujing Fan ◽  
...  

Vaccinating recovered patients previously infected by COVID-19 with mRNA vaccines to boost their immune response against wild-type viruses (WT), we aimed to investigate whether vaccine platform and time of vaccination affect immunogenicity against the SARS-CoV-2 WT and Delta variant (DV). Convalescent patients infected by COVID-19 were recruited and received one booster dose of the BNT162b2 (PC-B) or CoronaVac (PC-C) vaccines, while SARS-CoV-2 naïve subjects received two doses of the BNT162b2 (CN-B) or CoronaVac (CN-C) vaccines. The neutralizing antibody in sera against the WT and DV was determined with live virus neutralization assay (vMN). The vMN geometric mean titre (GMT) against WT in recovered individuals previously infected by COVID-19 reduced significantly from 60.0 (95% confidence interval (CI), 46.5–77.4) to 33.9 (95% CI, 26.3–43.7) at 6 months post recovery. In the PC-B group, the BNT162b2 vaccine enhanced antibody response against WT and DV, with 22.3-fold and 20.4-fold increases, respectively. The PC-C group also showed 1.8-fold and 2.2-fold increases for WT and DV, respectively, after receiving the CoronaVac vaccine. There was a 10.6-fold increase in GMT in the CN-B group and a 1.3-fold increase in the CN-C group against DV after full vaccination. In both the PC-B and PC-C groups, there was no difference between GMT against WT and DV after vaccination. Subjects in the CN-B and CN-C groups showed inferior GMT against DV compared with GMT against WT after vaccination. In this study, one booster shot effectively enhanced the pre-existing neutralizing activity against WT and DV in recovered subjects.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1346
Author(s):  
Jennifer K. DeMarco ◽  
Joshua M. Royal ◽  
William E. Severson ◽  
Jon D. Gabbard ◽  
Steve Hume ◽  
...  

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2–8 or 22–28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.


2021 ◽  
Author(s):  
Makda Gebre ◽  
Susanne Rauch ◽  
Nicole Roth ◽  
Jingyou Yu ◽  
Abishek Chandrashekar ◽  
...  

The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.


Sign in / Sign up

Export Citation Format

Share Document