scholarly journals Safety and efficacy of a new vaginal gel, Feminilove, for the treatment of symptoms associated with vaginal dryness and vulvovaginal atrophy in women: an in vitro and in vivo study

2021 ◽  
Author(s):  
Albert Gonzalez ◽  
Robert Lee ◽  
Larry Booshehri ◽  
David Grady ◽  
Victoria Vaddi ◽  
...  

Vaginal dryness is a common condition that is particularly prevalent during and after the menopause and it is one of the most important symptoms associated with vulvovaginal atrophy/genitourinary syndrome of menopause. The impact of vaginal dryness on interpersonal relationships, quality of life, daily activities, and sexual function can be significant, but is frequently underreported and undertreated. Personal lubricants and moisturizers are effective at relieving discomfort and pain during sexual intercourse for women with mild to moderate vaginal dryness, particularly those who have a genuine contraindication to estrogen, or who choose not to use estrogen. We evaluated the safety and beneficial effects of a new type of estrogen-free vaginal gel, Feminilove BIO-FRESH moisturizing vaginal gel, using in vitro and in vivo experimental tools. Our results suggest that; 1) Feminilove vaginal gel exhibits minimal cell cytotoxicity on various human vaginal cells; 2) Feminilove vaginal gel exhibits minimal side-effects on the structure of vaginal mucosa stratum of experimental animals; 3) Feminiove vaginal gel inhibits the growth of pathogenic vaginal bacteria (E. coli) while promotes the growth of beneficial vaginal bacteria (Lactobacillus spp); 4) Feminilove vaginal gel elicits an anti-inflammatory response on vaginal epithelial cells; and 5) Feminilove vaginal gel promotes the production of tropoelastin and collagen on cultural vaginal smooth muscle and may restore loose vaginal wall (i.e., tightening effects). In summary, our results indicate that Feminilove BIO-FRESH moisturizing vaginal gel is a safe and effective remedy for the treatment of symptoms associated with vaginal dryness and vulvovaginal atrophy in women. Keyword: vaginal dryness, vulvovaginal atrophy, genitourinary syndrome of menopause, sexual dysfunction, vaginal lubrication, vaginal moisturizer

2021 ◽  
Vol 4 (3) ◽  
pp. 250-253
Author(s):  
T.V. Tazina ◽  
◽  
A.V. Knyazeva ◽  
T.V. Bebneva ◽  
◽  
...  

The proportion of women of perimenopausal and postmenopausal age increases every year. Hormonal changes which are typical for these women are characterized by hypoestrogenism and a great diversity of clinical signs, e.g., vaginal dryness, irritation, itching, pain, burning, dyspareunia, and frequent urination. These symptoms occur at any age but are more common in postmenopausal women. Genitourinary syndrome of menopause (GSM) significantly reduces the quality of life of postmenopausal women. Among GSM presentations, vulvovaginal atrophy affects only vulvar and vaginal mucosa. Managing vulvovaginal atrophy in women of various ages is an important issue of gynecological practice. This paper describes current approaches to the treatment for vulvovaginal atrophy in women of various ages with a special focus on the association between vaginal dryness and the reduction of both general and sexual quality of life. In particular, non-hormonal topical medications are discussed. Knowing current (including international) approaches to address vaginal dryness are important for obstetrical gynecological practice. KEYWORDS: genitourinary syndrome of menopause, vulvovaginal atrophy, lubricants, vaginal moisturizers. FOR CITATION: Tazina T.V., Knyazeva A.V., Bebneva T.V. Current management of vaginal dryness. Russian Journal of Woman and Child Health. 2021;4(3):250–253 (in Russ.). DOI: 10.32364/2618-8430-2021-4-3-250-253.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


1998 ◽  
Vol 26 (5) ◽  
pp. 679-708 ◽  
Author(s):  
Horst Spielmann ◽  
Michael Balls ◽  
Jack Dupuis ◽  
Wolfgang J. W. Pape ◽  
Odile de Silva ◽  
...  

In 1996, the Scientific Committee on Cosmetology of DGXXIV of the European Commission asked the European Centre for the Validation of Alternative Methods to test eight UV filter chemicals from the 1995 edition of Annex VII of Directive 76/768/EEC in a blind trial in the in vitro 3T3 cell neutral red uptake phototoxicity (3T3 NRU PT) test, which had been scientifically validated between 1992 and 1996. Since all the UV filter chemicals on the positive list of EU Directive 76/768/EEC have been shown not to be phototoxic in vivo in humans under use conditions, only negative effects would be expected in the 3T3 NRU PT test. To balance the number of positive and negative chemicals, ten phototoxic and ten non-phototoxic chemicals were tested under blind conditions in four laboratories. Moreover, to assess the optimum concentration range for testing, information was provided on appropriate solvents and on the solubility of the coded chemicals. In this study, the phototoxic potential of test chemicals was evaluated in a prediction model in which either the Photoirritation Factor (PIF) or the Mean Photo Effect (MPE) were determined. The results obtained with both PIF and MPE were highly reproducible in the four laboratories, and the correlation between in vitro and in vivo data was almost perfect. All the phototoxic test chemicals provided a positive result at concentrations of 1μg/ml, while nine of the ten non-phototoxic chemicals gave clear negative results, even at the highest test concentrations. One of the UV filter chemicals gave positive results in three of the four laboratories only at concentrations greater than 100μg/ml; the other laboratory correctly identified all 20 of the test chemicals. An analysis of the impact that exposure concentrations had on the performance of the test revealed that the optimum concentration range in the 3T3 NRU PT test for determining the phototoxic potential of chemicals is between 0.1μg/ml and 10μg/ml, and that false positive results can be obtained at concentrations greater than 100μg/ml. Therefore, the positive results obtained with some of the UV filter chemicals only at concentrations greater than 100μg/ml do not indicate a phototoxic potential in vivo. When this information was taken into account during calculation of the overall predictivity of the 3T3 NRU PT test in the present study, an almost perfect correlation of in vitro versus in vivo results was obtained (between 95% and 100%), when either PIF or MPE were used to predict the phototoxic potential. The management team and participants therefore conclude that the 3T3 NRU PT test is a valid test for correctly assessing the phototoxic potential of UV filter chemicals, if the defined concentration limits are taken into account.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 507
Author(s):  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Alejandro Ruiz-Picazo ◽  
Marta Gonzalez-Alvarez ◽  
...  

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.


Sign in / Sign up

Export Citation Format

Share Document