scholarly journals Genome-wide identification of sexual-reproduction genes in fission yeast via transposon-insertion sequencing

2021 ◽  
Author(s):  
R. Blake Billmyre ◽  
Michael T. Eickbush ◽  
Caroline J. Craig ◽  
Jeffrey J. Lange ◽  
Christopher Wood ◽  
...  

AbstractMany genes required for sexual reproduction remain to be identified. Moreover, many of the genes that are known have been characterized in distinct experiments using different conditions, which complicates understanding the relative contributions of genes to sex. To address these challenges, we developed an assay in Schizosaccharomyces pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wildtype. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.

PLoS Genetics ◽  
2014 ◽  
Vol 10 (11) ◽  
pp. e1004782 ◽  
Author(s):  
Justin R. Pritchard ◽  
Michael C. Chao ◽  
Sören Abel ◽  
Brigid M. Davis ◽  
Catherine Baranowski ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Juan Xie ◽  
Jinfang Zheng ◽  
Xu Hong ◽  
Xiaoxue Tong ◽  
Shiyong Liu

AbstractProtein-RNA interaction participates in many biological processes. So, studying protein–RNA interaction can help us to understand the function of protein and RNA. Although the protein–RNA 3D3D model, like PRIME, was useful in building 3D structural complexes, it can’t be used genome-wide, due to lacking RNA 3D structures. To take full advantage of RNA secondary structures revealed from high-throughput sequencing, we present PRIME-3D2D to predict binding sites of protein–RNA interaction. PRIME-3D2D is almost as good as PRIME at modeling protein–RNA complexes. PRIME-3D2D can be used to predict binding sites on PDB data (MCC = 0.75/0.70 for binding sites in protein/RNA) and transcription-wide (MCC = 0.285 for binding sites in RNA). Testing on PDB and yeast transcription-wide data show that PRIME-3D2D performs better than other binding sites predictor. So, PRIME-3D2D can be used to predict the binding sites both on PDB and genome-wide, and it’s freely available.


2020 ◽  
Vol 20 (6) ◽  
pp. 825-838
Author(s):  
Xiaoqian Liu ◽  
Shanshan Chu ◽  
Chongyuan Sun ◽  
Huanqing Xu ◽  
Jinyu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document