transposon insertion sequencing
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Jilong Qin ◽  
Yaoqin Hong ◽  
Karthik Pullela ◽  
Renato Morona ◽  
Ian R. Henderson ◽  
...  

Abstract The study of clinically relevant bacterial pathogens relies on molecular and genetic approaches. However, the generally low transformation frequency among natural isolates poses technical hurdles to widely applying common methods in molecular biology, including transformation of large constructs, chromosomal genetic manipulation, and dense mutant library construction. Here we demonstrate that culturing clinical isolates in the presence of polymyxin B nonapeptide (PMBN) improves their transformation frequency via electroporation by up to 100-fold in a dose-dependent and reversible manner. The effect was observed for PMBN-binding uropathogenic Escherichia coli (UPEC) and Salmonella enterica strains but not naturally polymyxin resistant Proteus mirabilis. Using our PMBN electroporation method we show efficient delivery of large plasmid constructs into UPEC, which otherwise failed using a conventional electroporation protocol. Moreover, we show a 5-fold increase in the yield of engineered mutant colonies obtained in S. enterica with the widely used lambda-Red recombineering method, when cells are cultured in the presence of PMBN. Lastly, we demonstrate that PMBN treatment can enhance the delivery of DNA-transposase complexes into UPEC and increase transposon mutant yield by 8-fold when constructing Transposon Insertion Sequencing (TIS) libraries. Therefore, PMBN can be used as a powerful electropermeabilisation adjuvant to aid the delivery of DNA and DNA-protein complexes into clinically important bacteria.


2021 ◽  
Author(s):  
Wee Boon Tan ◽  
Shu-Sin Chng

AbstractThe conserved Tol-Pal trans-envelope complex is important for outer membrane (OM) stability and cell division in Gram-negative bacteria. It has been proposed to mediate OM constriction during cell division via tethering to the cell wall. Yet, recent studies suggest that the complex has additional roles in OM lipid homeostasis and septal cell wall separation. How the Tol-Pal complex functions to facilitate these many processes is unclear. To gain insights into its role(s), we applied transposon insertion sequencing, and report here a detailed network of genetic interactions with the tol-pal locus in Escherichia coli. We found one positive and >20 negative strong interactions based on fitness. Disruption of genes responsible for osmoregulated periplasmic glucan biosynthesis restores fitness and OM barrier function, but not cell division defects, in tol-pal mutants. In contrast, deletions of genes involved in OM homeostasis and cell wall remodelling give rise to synthetic growth defects in strains lacking Tol-Pal, especially exacerbating OM barrier and/or cell division defects. Notably, the ΔtolA mutant having additional defects in OM protein assembly (ΔbamB) exhibited severe division phenotypes, even under conditions where the single mutants divide normally; this highlights the possibility for OM phenotypes to indirectly influence the cell division process. Overall, our work provides insights into the intricate nature of Tol-Pal function, and reinforces the model that this complex plays crucial roles in cell wall-OM tethering, cell wall remodelling, and in particular, OM homeostasis.


2021 ◽  
Author(s):  
R. Blake Billmyre ◽  
Michael T. Eickbush ◽  
Caroline J. Craig ◽  
Jeffrey J. Lange ◽  
Christopher Wood ◽  
...  

AbstractMany genes required for sexual reproduction remain to be identified. Moreover, many of the genes that are known have been characterized in distinct experiments using different conditions, which complicates understanding the relative contributions of genes to sex. To address these challenges, we developed an assay in Schizosaccharomyces pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wildtype. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.


2021 ◽  
Author(s):  
Vishal Sarsani ◽  
Berent Aldikacti ◽  
Shai He ◽  
Rilee Zeinert ◽  
Peter Chien ◽  
...  

The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus  using both total and unique count data the model was able to identify a set of conditionally essential genes for each target condition that shed light on their functions and roles during various stress conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudine Baraquet ◽  
Weijun Dai ◽  
Jose Mendiola ◽  
Kieran Pechter ◽  
Caroline S. Harwood

AbstractBradyrhizobium diazoefficiens USDA110 is one of the most effective nitrogen-fixing symbionts of soybeans. Here we carried out a large-scale transposon insertion sequencing (Tn-seq) analysis of strain Bd110spc4, which is derived from USDA110, with the goal of increasing available resources for identifying genes crucial for the survival of this plant symbiont under diverse conditions. We prepared two transposon (Tn) insertion libraries of Bd110spc4 with 155,042 unique Tn insertions when the libraries were combined, which is an average of one insertion every 58.7 bp of the reference USDA110 genome. Application of bioinformatic filtering steps to remove genes too small to be expected to have Tn insertions, resulted in a list of genes that were classified as putatively essential. Comparison of this gene set with genes putatively essential for the growth of the closely related alpha-proteobacterium, Rhodopseudomonas palustris, revealed a small set of five genes that may be collectively essential for closely related members of the family Bradyrhizobiaceae. This group includes bacteria with diverse lifestyles ranging from plant symbionts to animal-associated species to free-living species.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Delphine Larivière ◽  
Laura Wickham ◽  
Kenneth Keiler ◽  
Anton Nekrutenko ◽  

Abstract Background Significant progress has been made in advancing and standardizing tools for human genomic and biomedical research. Yet, the field of next-generation sequencing (NGS) analysis for microorganisms (including multiple pathogens) remains fragmented, lacks accessible and reusable tools, is hindered by local computational resource limitations, and does not offer widely accepted standards. One such “problem areas” is the analysis of Transposon Insertion Sequencing (TIS) data. TIS allows probing of almost the entire genome of a microorganism by introducing random insertions of transposon-derived constructs. The impact of the insertions on the survival and growth under specific conditions provides precise information about genes affecting specific phenotypic characteristics. A wide array of tools has been developed to analyze TIS data. Among the variety of options available, it is often difficult to identify which one can provide a reliable and reproducible analysis. Results Here we sought to understand the challenges and propose reliable practices for the analysis of TIS experiments. Using data from two recent TIS studies, we have developed a series of workflows that include multiple tools for data de-multiplexing, promoter sequence identification, transposon flank alignment, and read count repartition across the genome. Particular attention was paid to quality control procedures, such as determining the optimal tool parameters for the analysis and removal of contamination. Conclusions Our work provides an assessment of the currently available tools for TIS data analysis. It offers ready to use workflows that can be invoked by anyone in the world using our public Galaxy platform (https://usegalaxy.org). To lower the entry barriers, we have also developed interactive tutorials explaining details of TIS data analysis procedures at https://bit.ly/gxy-tis.


Sign in / Sign up

Export Citation Format

Share Document