scholarly journals Free energy and stacking of eumelanin nanoaggregates

2021 ◽  
Author(s):  
Sepideh Soltani ◽  
Shahin Sowlati-Hashjin ◽  
Conrard Giresse Tetsassi Feugmo ◽  
Mikko Karttunen

AbstractEumelanin, a member of the melanin family, is a black-brown insoluble pigment. It possesses a broad range of properties such as antioxidation, free radical scavenging, photo-protection, and charge carrier transportation. Surprisingly, the exact molecular structure of eumelanin remains undefined. It is, however, generally considered to consist of two main building blocks, 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole carboxylic acid (DHICA). We focus on DHI and report, for the first time, a computational investigation of structural properties of DHI eumelanin aggregates in aqueous solutions. First, multi-microsecond molecular dynamics (MD) simulations at different concentrations were performed to investigate aggregation and ordering of tetrameric DHI-eumelanin protomolecules. This was followed by umbrella sampling (US) and density functional theory (DFT) calculations to study the physical mechanisms of stacking. Aggregation occurs through formation of nanoscale stacks and was observed in all systems. Further analyses showed that aggregation and coarsening of the domains is due to decrease in hydrogen bonds between the eumelanins and water; while domains exist, there is no long-range order. The results show non-covalent stacks with and interlayer distance between eumelanin protomolecules being less than 3.5 Å. This is in good agreement with transmission electron microscopy data. Both free energy calculations and DFT revealed strong stacking interactions. The electrostatic potential map provides an explanation and a rationale for the slightly sheared relative orientations and, consequently, for the curved shapes of the nanoscale domains.

2021 ◽  
Vol 21 (11) ◽  
pp. 5694-5697
Author(s):  
A. F. R. Rodriguez ◽  
R. F. Lacerda ◽  
L. E. Maggi ◽  
Hory Mohammadpour ◽  
Mohammad Niyaifar ◽  
...  

Magnetic nanocomposites based on maghemite nanoparticles supported (ex situ route) on styrene- divinilbenzene (Sty-DVB) copolymer templates were produced and characterized for their structure and morphology. The as-produced nanocomposites were further chemically-treated with different oxidant agents and surface-coated with stearic acid. X-ray diffraction and transmission electron microscopy data show that the incorporated nanoparticles are preserved despite the aggressive chemical treatments employed. From the dynamical susceptibility measurements performed on the nanocomposites, the values of the saturation magnetization (76 emu/g) and the effective magnetic anisotropy (1.7 × 104 J/m3) were obtained, in excellent agreement with the values reported in the literature for maghemite. This finding strongly supports the preservation of the magnetic properties of the supported nanosized maghemite throughout the entire samples’ processing.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850172
Author(s):  
MUDAR AHMED ABDULSATTAR ◽  
ADEEBH L. RESNE ◽  
SHROK ABDULLAH ◽  
RIYADH J. MOHAMMED ◽  
NOON KADHUM ALARED ◽  
...  

Density functional theory combined with Gibbs free energy calculations is used to study the sensing behavior of tin dioxide (SnO[Formula: see text] clusters towards chlorine gas molecules. Studied SnO2 clusters’ results show the known property of tin dioxide being an oxygen-deficient semiconductor with the preferred stoichiometry SnO[Formula: see text]. The kind of reactions that result in sensing Cl2 molecules is investigated. These include oxygen replacement, chlorine molecule dissociation and van der Waals attachment. Oxygen replacement shows an increase in energy gap which is the case experimentally. Optimum sensing operating temperature towards Cl2 molecules that results from the intersection of the highest SnO2 adsorption and desorption Gibbs free energy lines is at 275∘C in agreement with the experimentally measured temperature of 260∘C.


2015 ◽  
Vol 245 ◽  
pp. 200-203 ◽  
Author(s):  
Maxim Alexandrovich Pugachevskii ◽  
Viktor Igorevich Panfilov

The conditions of formation of the ZrO2 and HfO2 high-temperature (tetragonal and cubic) phases in the ablated nanoparticles were investigated. X-ray diffraction and transmission electron microscopy data demonstrate that laser intensities above 109 W/m2 ensure the formation of the ZrO2 high-temperature phases, while intensities above 5·109 W/m2 do the formation of the HfO2 high-temperature phases. Quantitative content of the high-temperature phases in layers of the ablated nanoparticles increases with raising the intensity. The obtained nanoparticles exhibit good thermal stability.


2021 ◽  
Author(s):  
Safak OZHAN KOCAKAYA

Abstract Recently, protein tyrosine phosphatase 1B (PTP1B) inhibitors have become the frontier as possible targeting for anti-cancer and antidiabetic drugs. The contemporary observe represents a pc assisted version to investigate the importance of precise residues within the binding web site of PTP1B with numerous Sanggenon derivatives remoted from nature. Molecular dynamics (MD) simulations were performed to estimate the dynamics of the complexes, and absolute binding unfastened energies have been calculated with exclusive additives, and carried out through the usage of the Molecular Mechanics-Poisson-Boltzmann floor region (MM-PB/SA) and Generalized Born surface vicinity (MM-GB/SA) strategies. The effects show that the expected free energies of the complexes are normally constant with the available experimental statistics. MM/GBSA free energy decomposition analysis shows that the residues Asp29, Arg24, Met258, and , Arg254 in the second active site in PTP1B are crucial for the excessive selectivity of the inhibitors.


Author(s):  
Angelina Folberth ◽  
Swaminath Bharadwaj ◽  
Nico van der Vegt

We report the effect of trimethylamine N-oxide (TMAO) on the solvation of nonpolar solutes in water studied with molecular dynamics (MD) simulations and free-energy calculations. The simulation data indicate the...


2009 ◽  
Vol 87 (10) ◽  
pp. 1322-1337 ◽  
Author(s):  
Hans Martin Senn ◽  
Johannes Kästner ◽  
Jürgen Breidung ◽  
Walter Thiel

We report potential-energy and free-energy data for three enzymatic reactions: carbon–halogen bond formation in fluorinase, hydrogen abstraction from camphor in cytochrome P450cam, and chorismate-to-prephenate Claisen rearrangement in chorismate mutase. The results were obtained by combined quantum mechanics/molecular mechanics (QM/MM) optimizations and two types of QM/MM free-energy simulations (free-energy perturbation and umbrella sampling) using semi-empirical or density-functional QM methods. Based on these results and our previously published free-energy data on electrophilic substitution in para-hydroxybenzoate hydroxylase, we discuss the importance of finite-temperature effects in the chemical step of enzyme reactions. We find that the entropic contribution to the activation barrier is generally rather small, usually of the order of 5 kJ mol–1 or less, consistent with the notion that enzymes bind and pre-organize the reactants in the active site. A somewhat larger entropic contribution is encountered in the case of chorismate mutase where the pericyclic transition state is intrinsically more rigid than the chorismate reactant (also in the enzyme). The present results suggest that barriers from QM/MM geometry optimization may often be close to free-energy barriers for the chemical step in enzymatic reactions.


2014 ◽  
Vol 67 (9) ◽  
pp. 1180 ◽  
Author(s):  
Mojtaba Mirhosseini Moghaddam ◽  
C. Oliver Kappe

The existence of selective microwave absorption phenomena in the synthesis of CdSe quantum dots has been investigated. These types of microwave effects involving selective microwave absorption by specific reagents have recently been proposed in the microwave-assisted synthesis of various nanoparticles. In the present study, the microwave synthesis of CdSe quantum dots was investigated according to a protocol published by Washington and Strouse to clarify the presence of selective microwave heating. Importantly, control experiments involving conventional conductive heating were executed under otherwise (except for the heating mode) identical conditions, ensuring the same heating and cooling profiles, stirring rates, and reactor geometries. Comparison of powder X-ray diffraction, UV-vis, photoluminescence, and transmission electron microscopy data of the obtained CdSe quantum dots reveals that identical types of nanoparticles are obtained independently of the heating mode. Therefore, no evidence for a selective microwave absorption phenomenon could be obtained.


Sign in / Sign up

Export Citation Format

Share Document