scholarly journals Serine Starvation Silences Estrogen Receptor Signaling through Histone Hypoacetylation

2021 ◽  
Author(s):  
Albert M. Li ◽  
Yang Li ◽  
Bo He ◽  
Haowen Jiang ◽  
Yaniel Ramirez ◽  
...  

ABSTRACTEstrogen receptor (ER) plays important roles in regulating normal development and female reproductive system function. Loss of ER pathway activity is a hallmark of breast cancer progression, associated with accelerated tumor proliferation and resistance to endocrine therapy. How ER loss occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in solid tumors, downregulates estrogen receptor alpha (ERα) expression, represses transcriptional targets such as progesterone receptor (PR), and reduces sensitivity to antiestrogens, suggesting a transition of ER-positive (ER+) breast cancer cells to an ER/PR-negative (ER-/PR-) state. ER downregulation under serine starvation is accompanied by a global loss of histone acetylation. These chromatin changes are driven by metabolic reprogramming triggered by serine starvation, particularly lower glucose flux through glycolysis and the TCA cycle, leading to reduced acetyl-CoA levels and histone hypoacetylation. Supplementation with acetate or glycerol triacetate (GTA), precursors of acetyl-CoA, restores H3K27 acetylation and ERα expression under serine starvation. Therefore, a major consequence of serine starvation in breast cancer could be global chromatin changes that influence lineage-specific gene expression.

2019 ◽  
Vol 20 (6) ◽  
pp. 690-704 ◽  
Author(s):  
Angeles C. Tecalco-Cruz ◽  
Josué O. Ramírez-Jarquín ◽  
Eduardo Cruz-Ramos

More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 432
Author(s):  
Iván Ponce ◽  
Nelson Garrido ◽  
Nicolás Tobar ◽  
Francisco Melo ◽  
Patricio C. Smith ◽  
...  

Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work was to investigate the possible functional link between these two processes. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material, to which matrix molecules were covalently linked. We evaluated metabolite transport in stromal cells using two different FRET (Fluorescence Resonance Energy Transfer) nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response was correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote metabolic reprograming and also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming, and cancer malignancy.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 543
Author(s):  
Rosaria Benedetti ◽  
Chiara Papulino ◽  
Giulia Sgueglia ◽  
Ugo Chianese ◽  
Tommaso De Marchi ◽  
...  

The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.


Sign in / Sign up

Export Citation Format

Share Document