scholarly journals Planktonic protist diversity across contrasting Subtropical and Subantarctic waters of the southwest Pacific

2021 ◽  
Author(s):  
Andres Gutierrez-Rodriguez ◽  
Adriana Lopes dos Santos ◽  
Karl Safi ◽  
Ian Probert ◽  
Fabrice Not ◽  
...  

Planktonic protists are an essential component of marine pelagic ecosystems where they mediate important trophic and biogeochemical functions. Although these functions are largely influenced by their taxonomic affiliation, the composition and spatial variability of planktonic protist communities remain poorly characterized in vast areas of the ocean. Here, we investigated the diversity of these communities in contrasting oceanographic conditions of the southwest Pacific sector (33-58 S) using DNA metabarcoding of the 18S rRNA. Seawater samples collected during twelve cruises (n = 482, 0-2000 m) conducted east of New Zealand were used to characterize protist communities in subtropical (STW) and subantarctic (SAW) water masses and the subtropical front (STF) that separates them. Diversity decreased with latitude and temperature but tended to be lowest in the STF. Sample ordination resulting from the abundance of amplicon single variants (ASVs) corresponded to the different water masses. Overall, Dinophyceae (34% of standardized total reads) and Chlorophyta (27%) co-dominated the euphotic zone, but their relative abundance and composition at class and lower taxonomic levels varied consistently between water masses. Among Chlorophyta, several picoplanktonic algae species of the Mamiellophyceae class including Ostreococcus lucimarinus dominated in STW, while the Chloropicophyceae species Chloroparvula pacifica was most abundant in SAW. Bacillariophyta (7%), Prymnesiophyceae (5%), and Pelagophyceae (3%) classes were less abundant but showed analogous water mass specificity at class and finer taxonomic levels. Protist community composition in the STFZ had mixed characteristics and showed regional differences with the southern STF (50 S) having more resemblance with subantarctic communities than the STF over the Chatham Rise region (42-44 S). Below the euphotic zone, Radiolaria sequences dominated the dataset (52%) followed by Dinophyceae (27%) and other heterotrophic groups like Marine Stramenopiles and ciliates (3%). Among Radiolaria, several unidentified ASVs assigned to Spumellarida were most abundant, but showed significantly different distribution between STW and SAW highlighting the need to further.

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Ivonne M Radjawane ◽  
Paundra P Hadipoetranto

<p><strong><em>ABSTRACT</em></strong></p> <p><em>Measurement of ocean physical param</em><em>eter</em><em>s using the CTD was conducted by </em><em>deep water expedition </em><em>INDEX-SATAL 2010 (Indonesian Expedition Sangihe-Talaud) in July-August 2010. Th</em><em>e</em><em> </em><em>aim of this </em><em>study wa</em><em>s to</em><em> determine the characteristics of water masses around the Sangihe Talaud Water where the</em><em>re </em><em>wa</em><em>s an entry passage of </em><em> Indonesian throughflow (ITF) </em><em>at</em><em> </em><em>the </em><em>west </em><em>path</em><em>way that passed through the </em><em>primary</em><em> pathway i.e., </em><em>the Sulawesi</em><em> Sea and Makassar Strait and the secondary pathway (east pathway) that passed through the Halmahera Sea. The analyses were performed by the method of the core layer and was  processed with software Ocean Data View (ODV). The results showed that in the Sangihe Talaud waters there was a meeting water masses from the North Pacific and the South Pacific. The water mass characteristics in main pathway through the Sulawesi Sea was dominated by surface and intermediate North Pacific water masses and carried by the Mindanao Currents. While the Halmahera Sea water mass was dominated by surface and intermediate South Pacific water masses carried by the New Guinea Coastal Current that moved along the Papua New Guinea and Papua coast enters to the Halmahera Sea. </em></p> <p><em> </em></p> <p><strong><em>Keywords</em></strong><em>: Index-Satal 2010, Northern Pacific Water Mass</em><em>es</em><em>, Southern Pacific Water </em></p> <em> Masses, Sangihe Talaud</em>


Radiocarbon ◽  
2019 ◽  
Vol 62 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Núria Casacuberta ◽  
Maxi Castrillejo ◽  
Anne-Marie Wefing ◽  
Silvia Bollhalder ◽  
Lukas Wacker

ABSTRACTA new method to extract CO2 in seawater samples for the determination of F14C has been developed in the Laboratory of Ion Beam Physics at ETH Zurich. The setup consists of an automated sampler designed to extract dissolved inorganic carbon (DIC) from 7 samples in a row, by flushing the seawater with He gas to extract CO2. The fully automated method is controlled via a LabVIEW program that runs through all consecutive steps: catalyst preconditioning, CO2 extraction, CO2 trapping, thermal CO2 release from the trap into the reactor and finally the graphitization reaction which is performed simultaneously in the 7 reactors. The method was optimized by introducing a Cu-Ag furnace that was placed between the water and zeolite traps, which resulted in a better and faster graphitization performance (<2 hr) compared to previously used techniques. The method showed to be reproducible with an unprecedented precision of 1.7‰ even though consuming only 50–60 mL of seawater. The high throughput of 21 samples per day allows for coverage of future oceanographic transects with high spatial resolution, thus fostering the use of radiocarbon (14C) as water mass tracer.


2018 ◽  
Vol 15 (7) ◽  
pp. 2075-2090 ◽  
Author(s):  
Maribel I. García-Ibáñez ◽  
Fiz F. Pérez ◽  
Pascale Lherminier ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
...  

Abstract. We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland–Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002–2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002–2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002–2010, with the increase being consistent with other estimates of ISOW transports along 58–59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002–2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in 2014 compared to the 2002–2010 mean was related to both the increase in the northward transport of Central Waters in the AMOC upper limb and to the increase in the southward flow of Irminger Basin SPMW and ISOW in the AMOC lower limb.


2020 ◽  
Vol 50 (2) ◽  
pp. 361-381 ◽  
Author(s):  
Esther Portela ◽  
Nicolas Kolodziejczyk ◽  
Christophe Maes ◽  
Virginie Thierry

AbstractUsing an Argo dataset and the ECCOv4 reanalysis, a volume budget was performed to address the main mechanisms driving the volume change of the interior water masses in the Southern Hemisphere oceans between 2006 and 2015. The subduction rates and the isopycnal and diapycnal water-mass transformation were estimated in a density–spiciness (σ–τ) framework. Spiciness, defined as thermohaline variations along isopycnals, was added to the potential density coordinates to discriminate between water masses spreading on isopycnal layers. The main positive volume trends were found to be associated with the Subantarctic Mode Waters (SAMW) in the South Pacific and South Indian Ocean basins, revealing a lightening of the upper waters in the Southern Hemisphere. The SAMW exhibits a two-layer density structure in which subduction and diapycnal transformation from the lower to the upper layers accounted for most of the upper-layer volume gain and lower-layer volume loss, respectively. The Antarctic Intermediate Waters, defined here between the 27.2 and 27.5 kg m−3 isopycnals, showed the strongest negative volume trends. This volume loss can be explained by their negative isopyncal transformation southward of the Antarctic Circumpolar Current into the fresher and colder Antarctic Winter Waters (AAWW) and northward into spicier tropical/subtropical Intermediate Waters. The AAWW is destroyed by obduction back into the mixed layer so that its net volume change remains nearly zero. The proposed mechanisms to explain the transformation within the Intermediate Waters are discussed in the context of Southern Ocean dynamics. The σ–τ decomposition provided new insight on the spatial and temporal water-mass variability and driving mechanisms over the last decade.


1979 ◽  
Vol 16 (2) ◽  
pp. 240-249 ◽  
Author(s):  
J. P. Chanut ◽  
S. A. Poulet

The spatial distribution of particle size spectra shows a two-layer stratification in May but reveals three-layer structure in September, both in the Saguenay fjord and in the adjacent waters of the St. Lawrence estuary, near the sill. In May, the particle size spectra in the surface layer show considerable variability whereas, in the bottom waters, they appear to be relatively homogeneous. In September, the deeper, more homogeneous water mass is less extensive. It is apparently eroded by diffusion and advection during summer months and becomes restricted to intermediate depths towards the head of the fjord. During the same period, a water mass with physical and particulate properties different from the upper layers occupies the bottom of the fjord. Principal component analysis shows that variations in particle size spectra are independent from one layer to another. Water masses with identical physical and particulate properties located in both sides of the sill illustrate the influence of the St. Lawrence estuary on the Saguenay fjord. These water masses, generally located below the sill depth, indicate the existence of powerful advective mechanisms in this region.


2016 ◽  
Vol 1 (2) ◽  
pp. 17
Author(s):  
Dewi Surinati ◽  
Edi Kusmanto

<strong>Stratification of Water Mass in Lasolo Bay, Southeast Sulawesi.</strong> As a nature conservation area, Lasolo Bay should be supported by data and information of waters oceanographic. Research for stratification of water masses in Lasolo Bay was conducted. from 10 to 19 July 2011. Temperature and salinity data were obtained using CTD SBE 911 Plus preinstalled on Research Vessel Baruna Jaya VIII at intervals of 24 data per second. Current data were obtained using Vessel Mounted Acoustic Doppler Current Profiler (VMADCP) with an interval of two seconds. The results show that there are differences in the speed and direction of currents in the water column that lead to stratification of water masses. Currents that drove the water mass of Banda Sea into Lasolo Bay was caused by southeasterly winds with an average speed of 4.1 m/s. At depths of 0–50 m and 100–200 m the current dominance occurs to the northwest, while at depths of 50–100 m and 200–350 m it occurs to the south. The water mass with a salinity of 32.1–34.0 PSU and temperature 26–28°C occupied the surface layer (0–50 m). The water mass with a salinity of 34.4–34.5 PSU identified as the water mass of North Pacific Intermediate Water (NPIW) occupied two depths, i.e. 50–100 m and 200–350 m with different range of temperatures. The water mass with maximum salinity (34.5–34.6 PSU), identified as the water mass of North Pacific Subtropical Water (NPSW) also occupied two depths i.e. 100–200 m and 350 m until near the bottom with different range of temperatures<br /><br />


1964 ◽  
Vol 15 (1) ◽  
pp. 25 ◽  
Author(s):  
DJ Rochford

The following seven water masses have been identified, and their distribution traced during several seasons of the year: Red Sea mass, with the same distribution and properties in 1962 as the north-west Indian Intermediate described in 1959-60; Persian Gulf mass, which is confined to the region south of Indonesia and is limited in extent of easterly flow by the opposing flow of Banda Intermediate water; upper salinity minimum mass, entering via Lombok Strait and moving zonally in the direction of the prevailing surface currents, a secondary movement of this water mass towards north-west Australia is limited by the northern boundary of a south-east Indian high salinity water mass. This latter water mass occurs as three separate core layers north of 22-23� S. The deep core layer mixes with waters of the oxygen maximum below it, the mid-depth core layer mixes with Persian Gulf and upper salinity minimum water masses, and the upper core layer mixes with the Arabian Sea water mass. The latter water mass spreads eastwards to about 120� E. and southwards to north-west Australia, in conformity with surface currents. A sixth water mass enters with the counter-current and is found as a salinity maximum within the thermocline to about 20� S. A seventh water mass characterized by a salinity maximum around temperatures of 28-29�C has a limited distribution and an unknown origin. Both of these water masses move in the direction of surface currents.


Sign in / Sign up

Export Citation Format

Share Document