scholarly journals STAT3-mediated allelic imbalance of novel genetic variant rs1047643 and B cell specific super-enhancer in association with systemic lupus erythematosus

2021 ◽  
Author(s):  
Yanfeng Zhang ◽  
Kenny Day ◽  
Devin M Absher

Mapping of allelic imbalance (AI) at heterozygous loci has the potential to establish links between genetic risk for disease and biological function. Leveraging multi-omics data for AI analysis and functional annotation, we discovered a novel functional risk variant rs1047643 at 8p23 in association with SLE. This variant displays dynamic AI of chromatin accessibility and allelic expression on FDFT1 gene in B cells with SLE. We further found a B-cell restricted super-enhancer (SE) that physically contacts with this SNP-residing locus, an interaction that also appears specifically in B cells. Quantitative analysis of open chromatin and DNA methylation profiles further demonstrated that the SE exhibits aberrant activity in B cell development with SLE. Functional studies identified that STAT3, a master factor associated with autoimmune diseases, directly regulates both the AI of risk variant and the activity of SE in cultured B cells. Our study reveals that STAT3-mediated SE activity and cis-regulatory effects of SNP rs1047643 at 8p23 locus are associated with B cell deregulation in SLE.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kittikorn Wangriatisak ◽  
Chokchai Thanadetsuntorn ◽  
Thamonwan Krittayapoositpot ◽  
Chaniya Leepiyasakulchai ◽  
Thanitta Suangtamai ◽  
...  

Abstract Background Autoreactive B cells are well recognized as key participants in the pathogenesis of systemic lupus erythematosus (SLE). However, elucidating the particular subset of B cells in producing anti-dsDNA antibodies is limited due to their B cell heterogeneity. This study aimed to identify peripheral B cell subpopulations that display autoreactivity to DNA and contribute to lupus pathogenesis. Methods Flow cytometry was used to detect total B cell subsets (n = 20) and DNA autoreactive B cells (n = 15) in SLE patients’ peripheral blood. Clinical disease activities were assessed in SLE patients using modified SLEDAI-2 K and used for correlation analyses with expanded B cell subsets and DNA autoreactive B cells. Results The increases of circulating double negative 2 (DN2) and activated naïve (aNAV) B cells were significantly observed in SLE patients. Expanded B cell subsets and DNA autoreactive B cells represented a high proportion of aNAV B cells with overexpression of CD69 and CD86. The frequencies of aNAV B cells in total B cell populations were significantly correlated with modified SLEDAI-2 K scores. Further analysis showed that expansion of aNAV DNA autoreactive B cells was more related to disease activity and serum anti-dsDNA antibody levels than to total aNAV B cells. Conclusion Our study demonstrated an expansion of aNAV B cells in SLE patients. The association between the frequency of aNAV B cells and disease activity patients suggested that these expanded B cells may play a role in SLE pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hector Rincon-Arevalo ◽  
Annika Wiedemann ◽  
Ana-Luisa Stefanski ◽  
Marie Lettau ◽  
Franziska Szelinski ◽  
...  

Circulating CD11c+ B cells are a key phenomenon in certain types of autoimmunity but have also been described in the context of regular immune responses (i.e., infections, vaccination). Using mass cytometry to profile 46 different markers on individual immune cells, we systematically initially confirmed the presence of increased CD11c+ B cells in the blood of systemic lupus erythematosus (SLE) patients. Notably, significant differences in the expression of CD21, CD27, and CD38 became apparent between CD11c− and CD11c+ B cells. We observed direct correlation of the frequency of CD21−CD27− B cells and CD21−CD38− B cells with CD11c+ B cells, which were most pronounced in SLE compared to primary Sjögren's syndrome patients (pSS) and healthy donors (HD). Thus, CD11c+ B cells resided mainly within memory subsets and were enriched in CD27−IgD−, CD21−CD27−, and CD21−CD38− B cell phenotypes. CD11c+ B cells from all donor groups (SLE, pSS, and HD) showed enhanced CD69, Ki-67, CD45RO, CD45RA, and CD19 expression, whereas the membrane expression of CXCR5 and CD21 were diminished. Notably, SLE CD11c+ B cells showed enhanced expression of the checkpoint molecules CD86, PD1, PDL1, CD137, VISTA, and CTLA-4 compared to HD. The substantial increase of CD11c+ B cells with a CD21− phenotype co-expressing distinct activation and checkpoint markers, points to a quantitative increased alternate (extrafollicular) B cell activation route possibly related to abnormal immune regulation as seen under the striking inflammatory conditions of SLE which shows a characteristic PD-1/PD-L1 upregulation.


2019 ◽  
Vol 20 (23) ◽  
pp. 6021 ◽  
Author(s):  
Kongyang Ma ◽  
Wenhan Du ◽  
Xiaohui Wang ◽  
Shiwen Yuan ◽  
Xiaoyan Cai ◽  
...  

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by excessive autoantibody production and multi-organ involvement. Although the etiology of SLE still remains unclear, recent studies have characterized several pathogenic B cell subsets and regulatory B cell subsets involved in the pathogenesis of SLE. Among pathogenic B cell subsets, age-associated B cells (ABCs) are a newly identified subset of autoreactive B cells with T-bet-dependent transcriptional programs and unique functional features in SLE. Accumulation of T-bet+ CD11c+ ABCs has been observed in SLE patients and lupus mouse models. In addition, innate-like B cells with the autoreactive B cell receptor (BCR) expression and long-lived plasma cells with persistent autoantibody production contribute to the development of SLE. Moreover, several regulatory B cell subsets with immune suppressive functions have been identified, while the impaired inhibitory effects of regulatory B cells have been indicated in SLE. Thus, further elucidation on the functional features of B cell subsets will provide new insights in understanding lupus pathogenesis and lead to novel therapeutic interventions in the treatment of SLE.


Rheumatology ◽  
2020 ◽  
Vol 59 (9) ◽  
pp. 2616-2624
Author(s):  
Svenja Henning ◽  
Wietske M Lambers ◽  
Berber Doornbos-van der Meer ◽  
Wayel H Abdulahad ◽  
Frans G M Kroese ◽  
...  

Abstract Objectives Incomplete SLE (iSLE) patients display symptoms typical for SLE but have insufficient criteria to fulfil the diagnosis. Biomarkers are needed to identify iSLE patients that will progress to SLE. IFN type I activation, B-cell-activating factor (BAFF) and B-cell subset distortions play an important role in the pathogenesis of SLE. The aim of this cross-sectional study was to investigate whether B-cell subsets are altered in iSLE patients, and whether these alterations correlate with IFN scores and BAFF levels. Methods iSLE patients (n = 34), SLE patients (n = 41) with quiescent disease (SLEDAI ≤4) and healthy controls (n = 22) were included. Proportions of B-cell subsets were measured with flow cytometry, IFN scores with RT-PCR and BAFF levels with ELISA. Results Proportions of age-associated B-cells were elevated in iSLE patients compared with healthy controls and correlated with IgG levels. In iSLE patients, IFN scores and BAFF levels were significantly increased compared with healthy controls. Also, IFN scores correlated with proportions of switched memory B-cells, plasma cells and IgG levels, and correlated negatively with complement levels in iSLE patients. Conclusion In this cross-sectional study, distortions in B-cell subsets were observed in iSLE patients and were correlated with IFN scores and IgG levels. Since these factors play an important role in the pathogenesis of SLE, iSLE patients with these distortions, high IFN scores, and high levels of IgG and BAFF may be at risk for progression to SLE.


2018 ◽  
Vol 46 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Kuo-Hsuan Hung ◽  
Yong H Woo ◽  
I-Ying Lin ◽  
Chin-Hsiu Liu ◽  
Li-Chieh Wang ◽  
...  

Abstract T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


2015 ◽  
Vol 75 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Sarah A Jones ◽  
Andrew E J Toh ◽  
Dragana Odobasic ◽  
Marie-Anne Virginie Oudin ◽  
Qiang Cheng ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids.MethodsWe conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice.ResultsReduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli.ConclusionsOur findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


2020 ◽  
Vol 318 (5) ◽  
pp. F1258-F1270 ◽  
Author(s):  
Li Xiang ◽  
An Liu ◽  
Guoshuang Xu

B lymphocyte hyperactivity plays a pathogenic role in systemic lupus erythematosus (SLE), and spliced X box-binding protein 1 (XBP1s) has been implicated in B cell maturation and differentiation. We hypothesized that blockade of the XBP1s pathway inhibits the B cell hyperactivity underlying SLE and lupus nephritis (LN) development. In the present study, we systematically evaluated the changes in B cell activation induced by the Xbp1 splicing inhibitor STF083010 in a pristane-induced lupus mouse model. The lupus mouse model was successfully established, as indicated by the presence of LN with markedly increased urine protein levels, renal deposition of Ig, and mesangial cell proliferation. In lupus mice, B cell hyperactivity was confirmed by increased CD40 and B cell-activating factor levels. B cell activation and plasma cell overproduction were determined by increases in CD40-positive and CD138-positive cells in the spleens of lupus mice by flow cytometry and further confirmed by CD45R and Ig light chain staining in the splenic tissues of lupus mice. mRNA and protein expression of XBP1s in B cells was assessed by real-time PCR, Western blot analysis, and immunofluorescence analysis and was increased in lupus mice. In addition, almost all changes were reversed by STF083010 treatment. However, the expression of XBP1s in the kidneys did not change when mice were exposed to pristane and STF083010. Taken together, these findings suggest that expression of XBP1s in B cells plays key roles in SLE and LN development. Blockade of the XBP1s pathway may be a potential strategy for SLE and LN treatment.


Lupus ◽  
2019 ◽  
Vol 28 (11) ◽  
pp. 1337-1343 ◽  
Author(s):  
A Benitez ◽  
K Torralba ◽  
M Ngo ◽  
L M Salto ◽  
K S Choi ◽  
...  

Objective We evaluated the effects of the B-cell activating factor (BAFF)-targeting antibody Belimumab on human nonmemory B-cell pools. Human B-cell pools were identified using surface markers adapted from mouse studies that specifically assessed reductions in immature B cells due to BAFF depletion. Patients with systemic lupus erythematosus (SLE) have high levels of both BAFF and immature B cells. Mechanistic mouse studies provide a framework for understanding human responses to therapies that target B cells. Methods Peripheral blood mononuclear cells were isolated from healthy donors and SLE patients on Belimumab or standard-of-care therapy (SCT). Cells were stained for flow cytometry to identify B-cell subsets based on CD21/CD24. Differences in subset proportions were determined by one-way ANOVA and Tukey’s post hoc test. Results Patients treated with Belimumab show alterations in the nonmemory B-cell pool characterized by a decrease in the Transitional 2 (T2) subset ( p = 0.002), and an increase in the proportion of Transitional 1 (T1) cells ( p = 0.005) as compared with healthy donors and SCT patients. The naïve B-cell compartment showed no significant differences between the groups ( p = 0.293). Conclusion Using a translational approach, we show that Belimumab-mediated BAFF depletion reduces the T2 subset in patients, similar to observations in mouse models with BAFF depletion.


1999 ◽  
Vol 42 (12) ◽  
pp. 2593-2600 ◽  
Author(s):  
Syuichi Koarada ◽  
Yoshifumi Tada ◽  
Osamu Ushiyama ◽  
Fumitaka Morito ◽  
Noriaki Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document