scholarly journals A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex

2021 ◽  
Author(s):  
Vera Valakh ◽  
Xiaoyue Aelita Zhu ◽  
Derek L Wise ◽  
Stephen Van Hooser ◽  
Robin Schectman ◽  
...  

Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here we uncover negative regulation of cortical network homeostasis by PAR bZIP family of transcription factors. In their absence the network response to prolonged activity withdrawal is too strong and this is driven by exaggerated upregulation of recurrent excitatory synaptic transmission. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.

2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1345-1363 ◽  
Author(s):  
Hélène George ◽  
Régine Terracol

We report here the genetical and molecular characterization of a new Drosophila zygotic lethal locus, vrille (vri). vri alleles act not only as dominant maternal enhancers of embryonic dorsoventral patterning defects caused by easter and decapentaplegic (dpp) mutations, but also as dominant zygotic enhancers of dpp alleles for phenotypes in wing. The vri gene encodes a new member of the bZIP family of transcription factors closely related to gene 9 of Xenopus laevis, induced by thyroid hormone during the tadpole tail resorption program, and NF-IL3A, a human T cell transcription factor that transactivates the interleukin-3 promoter. NF-IL3A shares 93% similarity and 60% identity with Vri for a stretch of 68 amino acids that includes the bZIP domain. Although all the alleles tested behave like antimorphs, the dominant enhancement is also seen with a nonsense mutation allele that prevents translation of the bZIP domain. Because of the strong dominant enhancement of dpp phenotypes by vri alleles in both embryo and wing, and also the similarity between the wing vein phenotypes caused by the vri and shortvein dpp alleles, we postulate that vri interacts either directly or indirectly with certain components of the dpp (a TGFβ homologue) signal transduction pathway.


2012 ◽  
Vol 209 (13) ◽  
pp. 2409-2422 ◽  
Author(s):  
Heiyoun Jung ◽  
Benjamin Hsiung ◽  
Kathleen Pestal ◽  
Emily Procyk ◽  
David H. Raulet

The NKG2D stimulatory receptor expressed by natural killer cells and T cell subsets recognizes cell surface ligands that are induced on transformed and infected cells and facilitate immune rejection of tumor cells. We demonstrate that expression of retinoic acid early inducible gene 1 (RAE-1) family NKG2D ligands in cancer cell lines and proliferating normal cells is coupled directly to cell cycle regulation. Raet1 genes are directly transcriptionally activated by E2F family transcription factors, which play a central role in regulating cell cycle entry. Induction of RAE-1 occurred in primary cell cultures, embryonic brain cells in vivo, and cells in healing skin wounds and, accordingly, wound healing was delayed in mice lacking NKG2D. Transcriptional activation by E2Fs is likely coordinated with posttranscriptional regulation by other stress responses. These findings suggest that cellular proliferation, as occurs in cancer cells but also other pathological conditions, is a key signal tied to immune reactions mediated by NKG2D-bearing lymphocytes.


1999 ◽  
Vol 19 (6) ◽  
pp. 4028-4038 ◽  
Author(s):  
Shen-Hsi Yang ◽  
Alex Galanis ◽  
Andrew D. Sharrocks

ABSTRACT Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38α and p38β2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).


Sign in / Sign up

Export Citation Format

Share Document