scholarly journals Ultra-deep sequencing reveals no evidence of oncogenic mutations or enrichment by ex vivo CRISPR/Cas9 genome editing in human hematopoietic stem and progenitor cells

2021 ◽  
Author(s):  
M. Kyle Cromer ◽  
Valentin V. Barsan ◽  
Erich Jaeger ◽  
Mengchi Wang ◽  
Jessica P. Hampton ◽  
...  

As CRISPR-based therapies enter the clinic, evaluation of the safety remains a critical and still active area of study. While whole genome sequencing is an unbiased method for identifying somatic mutations introduced by ex vivo culture and genome editing, this methodology is unable to attain sufficient read depth to detect extremely low frequency events that could result in clonal expansion. As a solution, we utilized an exon capture panel to facilitate ultra-deep sequencing of >500 tumor suppressors and oncogenes most frequently altered in human cancer. We used this panel to investigate whether transient delivery of high-fidelity Cas9 protein targeted to three different loci (using guide RNAs (gRNAs) corresponding to sites at AAVS1, HBB, and ZFPM2) at day 4 and day 10 timepoints post-editing resulted in the introduction or enrichment of oncogenic mutations. In three separate primary human HSPC donors, we identified a mean of 1,488 variants per Cas9 treatment (at <0.07% limit of detection). After filtering to remove germline and/or synonymous changes, a mean of 3.3 variants remained per condition, which were further reduced to six total mutations after removing variants in unedited treatments. Of these, four variants resided at the predicted off-target site in the myelodysplasia-associated EZH2 gene that were subject to ZFPM2 gRNA targeting in Donors 2 and 3 at day 4 and day 10 timepoints. While Donor 1 displayed on-target cleavage at ZFPM2, we found no off-target activity at EZH2. Sanger sequencing revealed a homozygous single nucleotide polymorphism (SNP) at position 14bp distal from the Cas9 protospacer adjacent motif in EZH2 that eliminated any detectable off-target activity. We found no evidence of exonic off-target INDELs with either of the AAVS1 or HBB gRNAs. These findings indicate that clinically relevant delivery of high-fidelity Cas9 to primary HSPCs and ex vivo culture up to 10 days does not introduce or enrich for tumorigenic variants and that even a single SNP outside the seed region of the gRNA protospacer is sufficient to eliminate Cas9 off-target activity with this method of delivery into primary, repair competent human HSPCs.

2021 ◽  
Vol 20 ◽  
pp. 451-462
Author(s):  
Suvd Byambaa ◽  
Hideki Uosaki ◽  
Tsukasa Ohmori ◽  
Hiromasa Hara ◽  
Hitoshi Endo ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Daisuke Araki ◽  
Stefan Cordes ◽  
Fayaz Seifuddin ◽  
Luigi J. Alvarado ◽  
Mehdi Pirooznia ◽  
...  

Notch activation in human CD34+ hematopoietic stem/progenitor cells (HSPCs) by treatment with Delta1 ligand has enabled clinically relevant ex vivo expansion of short-term HSPCs. However, sustained engraftment of the expanded cells was not observed after transplantation, suggesting ineffective expansion of hematopoietic stem cells with long-term repopulating activity (LTR-HSCs). Recent studies have highlighted how increased proliferative demand in culture can trigger endoplasmic reticulum (ER) stress and impair HSC function. Here, we investigated whether ex vivo culture of HSPCs under hypoxia might limit cellular ER stress and thus offer a simple approach to preserve functional HSCs under high proliferative conditions, such as those promoted in culture with Delta1. Human adult mobilized CD34+ cells were cultured for 21 days under normoxia (21% O2) or hypoxia (2% O2) in vessels coated with optimized concentrations of Delta1. We observed enhanced progenitor cell activity within the CD34+ cell population treated with Delta1 in hypoxia, but the benefits provided by low-oxygen cultures were most notable in the primitive HSC compartment. At optimal coating densities of Delta1, the frequency of LTR-HSCs measured by limiting dilution analysis 16 weeks after transplantation into NSG mice was 4.9- and 4.2-fold higher in hypoxic cultures (1 in 1,586 CD34+ cells) compared with uncultured cells (1 in 7,706) and the normoxia group (1 in 5,090), respectively. Conversely, we observed no difference in expression of the homing CXCR4 receptor between cells cultured under normoxic and hypoxic conditions, indicating that hypoxia increased the absolute numbers of LTR-HSCs but not their homing potential after transplantation. To corroborate these findings molecularly, we performed transcriptomic analyses and found significant upregulation of a distinct HSC gene expression signature in cells cultured with Delta1 in hypoxia (Fig. A). Collectively, these data show that hypoxia supports a superior ex vivo expansion of human HSCs with LTR activity compared with normoxia at optimized densities of Delta1. To clarify how hypoxia improved Notch-mediated expansion of LTR-HSCs, we performed scRNA-seq of CD34+ cells treated with Delta1 under normoxic or hypoxic conditions. We identified 6 distinct clusters (clusters 0 to 5) in dimension-reduction (UMAP) analysis, with a comparable distribution of cells per cluster between normoxic and hypoxic cultures. Most clusters could be computationally assigned to a defined hematopoietic subpopulation, including progenitor cells (clusters 0 to 4) and a single transcriptionally defined HSC population (cluster 5). To assess the relative impact of normoxia and hypoxia on the HSC compartment, we performed gene set enrichment analysis (GSEA) of cells within HSC cluster 5 from each culture condition. A total of 32 genes were differentially expressed, and pathways indicative of cellular ER stress (unfolded protein response [UPR], heat shock protein [HSP] and chaperone) were significantly downregulated in hypoxia-treated cells relative to normoxic cultures (Fig. B). When examining expression of cluster 5 top differentially expressed genes across all cell clusters, we observed a more prominent upregulation of these genes within transcriptionally defined HSCs exposed to normoxia relative to more mature progenitors (Fig. C, red plots). Hypoxia lessened the cellular stress response in both progenitors and HSCs, but the mitigation was more apparent in the HSC population (Fig. C, grey plots), and decreased apoptosis was observed only within the HSC-enriched cluster 5 (Fig. D). These findings are consistent with several reports indicating that HSCs are more vulnerable to strong ER stress than downstream progenitors due to their lower protein folding capacity. In conclusion, we provide evidence that ex vivo culture of human adult CD34+ cells under hypoxic conditions enables a superior Delta1-mediated expansion of hematopoietic cells with LTR activity compared with normoxic cultures. Our data suggest a two-pronged mechanism by which optimal ectopic activation of Notch signaling in human HSCs promotes their self-renewal, and culture under hypoxia mitigates ER stress triggered by the increased proliferative demand, resulting in enhanced survival of expanding HSCs. This clinically feasible approach may be useful to improve outcomes of cellular therapeutics. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4612-4621 ◽  
Author(s):  
M.A. Dao ◽  
K. Hashino ◽  
I. Kato ◽  
J.A. Nolta

Abstract Recent reports have indicated that there is poor engraftment from hematopoietic stem cells (HSC) that have traversed cell cycle ex vivo. However, inducing cells to cycle in culture is critical to the fields of ex vivo stem cell expansion and retroviral-mediated gene therapy. Through the use of a xenograft model, the current data shows that human hematopoietic stem and progenitor cells can traverse M phase ex vivo, integrate retroviral vectors, engraft, and sustain long-term hematopoiesis only if they have had the opportunity to engage their integrin receptors to fibronectin during the culture period. If cultured in suspension under the same conditions, transduction is undetectable and the long-term multilineage regenerative capacity of the primitive cells is severely diminished.


Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Terumasa Umemoto ◽  
Masayuki Yamato ◽  
Jun Ishihara ◽  
Yoshiko Shiratsuchi ◽  
Mika Utsumi ◽  
...  

AbstractThroughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-β3 signaling contributes to HSC maintenance. Specific ligation of β3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvβ3-integrin “inside-out” signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent “outside-in” signaling via phosphorylation of Tyr747 in the β3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between β3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Dimitri A. Breems ◽  
Ellen A.W. Blokland ◽  
Karen E. Siebel ◽  
Angelique E.M. Mayen ◽  
Lilian J.A. Engels ◽  
...  

Stroma-supported long-term cultures (LTC) allow estimation of stem cell quality by simultaneous enumeration of hematopoietic stem cell (HSC) frequencies in a graft using the cobblestone area forming cell (CAFC) assay, and the ability of the graft to generate progenitors in flask LTC (LTC-CFC). We have recently observed that the number and quality of mobilized peripheral blood stem cells (PBSC) was low in patients having received multiple rounds of chemotherapy. Moreover, grafts with low numbers of HSC and poor HSC quality had a high probability to cause graft failure upon their autologous infusion. Because ex vivo culture of stem cells has been suggested to present an attractive tool to improve hematological recovery or reduce graft size, we have studied the possibility that such propagation may affect stem cell quality. In order to do so, we have assessed the recovery of different stem cell subsets in CD34+ PBSC after a 7-day serum-free liquid culture using CAFC and LTC-CFC assays. A numerical expansion of stem cell subsets was observed in the presence of interleukin-3 (IL-3), stem cell factor, and IL-6, while stroma-contact, stromal soluble factors, or combined addition of FLT3-ligand and thrombopoietin improved this parameter. In contrast, ex vivo culture severely reduced the ability of the graft to produce progenitors in LTC while stromal soluble factors partly abrogated this quality loss. The best conservation of graft quality was observed when the PBSC were cultured in stroma-contact. These data suggest that ex vivo propagation of PBSC may allow numerical expansion of various stem cell subsets, however, at the expense of their quality. In addition, cytokine-driven PBSC cultures require stroma for optimal maintenance of graft quality.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5889-5889
Author(s):  
Chen Ling ◽  
Kanit Bhukhai ◽  
Zifei Yin ◽  
Mengqun Tan ◽  
Mervin Yoder ◽  
...  

Abstract We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced poorly with the WT AAV6 vectors. The first strategy involved modification of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705+Y731F+T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density, which revealed a novel mechanism, which we have termed, 'cross-transduction'. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs. Disclosures Leboulch: bluebird bio: Patents & Royalties. Payen:bluebird bio: Patents & Royalties. Srivastava:AGTC; Genzyme: Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 131 (26) ◽  
pp. 2915-2928 ◽  
Author(s):  
Chang Li ◽  
Nikoletta Psatha ◽  
Pavel Sova ◽  
Sucheol Gil ◽  
Hongjie Wang ◽  
...  

Key Points CRISPR/Cas9-mediated disruption of a BCL11A binding site in HSCs of β-YAC mice results in the reactivation of γ-globin in erythrocytes. Our approach for in vivo HSC genome editing that does not require HSC transplantation and myeloablation should simplify HSC gene therapy.


Sign in / Sign up

Export Citation Format

Share Document