scholarly journals Where is the money? Dynamics in feedback processing and attention during spatial probabilistic learning

2021 ◽  
Author(s):  
Celina Pütz ◽  
Berry van den Berg ◽  
Monicque M. Lorist

Learned feature-based stimulus-reward-associations can modulate behavior and the underlying neural processing of information. In our study, we investigated the neurocognitive mechanisms underlying learning of spatial stimulus-reward-associations. Participants performed a probabilistic spatial reward-learning task that required participants, within 40 trials, to learn which out of four locations on a computer screen yielded the most gain-feedback when chosen. Our behavioral findings show that participants learned to choose which location was most rewarding. Those findings were paralleled by significant amplitude differences in event-related potentials (ERPs) elicited by the presentation of loss and gain feedback; the amplitude of the feedback-related negativity (FRN) was more negative in response to loss feedback compared to gain feedback, but showed no modulation by trial-number. On the other hand, the late positive component (LPC), became larger in response to losses as the learning-set progressed, but smaller in response to gains. Additionally, immediately following feedback presentation, brain activity in the visual cortex - read out through alpha frequency oscillations measured over occipital sites - was predictive of the amplitude of the N2pc ERP component, a marker of spatial attention orienting, observed on the next trial. Taken together, we elucidated neurocognitive dynamics underlying feedback processing in spatial reward learning, and the subsequent effects that spatial stimulus-reward association learning have on spatial attention.

2020 ◽  
Author(s):  
Yan Gu ◽  
Tianliang Liu ◽  
Xuemeng Zhang ◽  
Quanshan Long ◽  
Na Hu ◽  
...  

Abstract Feedback-related negativity (FRN) is believed to encode reward prediction error (RPE), a term describing whether the outcome is better or worse than expected. However, some studies suggest that it may reflect unsigned prediction error (UPE) instead. Some disagreement remains as to whether FRN is sensitive to the interaction of outcome valence and prediction error (PE) or merely responsive to the absolute size of PE. Moreover, few studies have compared FRN in appetitive and aversive domains to clarify the valence effect or examine PE’s quantitative modulation. To investigate the impact of valence and parametrical PE on FRN, we varied the prediction and feedback magnitudes within a probabilistic learning task in valence (gain and loss domains, Experiment 1) and non-valence contexts (pure digits, Experiment 2). Experiment 3 was identical to Experiment 1 except that some blocks emphasized outcome valence, while others highlighted predictive accuracy. Experiments 1 and 2 revealed a UPE encoder; Experiment 3 found an RPE encoder when valence was emphasized and a UPE encoder when predictive accuracy was highlighted. In this investigation, we demonstrate that FRN is sensitive to outcome valence and expectancy violation, exhibiting a preferential response depending on the dimension that is emphasized.


2003 ◽  
Vol 15 (1) ◽  
pp. 10-19 ◽  
Author(s):  
John J. McDonald ◽  
Wolfgang A. Teder-Sälejärvi ◽  
Francesco Di Russo ◽  
Steven A. Hillyard

Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse dipole modeling. A spatially nonpredictive auditory precue modulated visual-evoked neural activity first in the superior temporal cortex at 120–140 msec and then in the ventral occipital cortex of the fusiform gyrus 15–25 msec later. This spatio-temporal sequence of brain activity suggests that enhanced visual perception produced by the cross-modal orienting of spatial attention results from neural feedback from the multimodal superior temporal cortex to the visual cortex of the ventral processing stream.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 304
Author(s):  
Kelsey Cnudde ◽  
Sophia van Hees ◽  
Sage Brown ◽  
Gwen van der Wijk ◽  
Penny M. Pexman ◽  
...  

Visual word recognition is a relatively effortless process, but recent research suggests the system involved is malleable, with evidence of increases in behavioural efficiency after prolonged lexical decision task (LDT) performance. However, the extent of neural changes has yet to be characterized in this context. The neural changes that occur could be related to a shift from initially effortful performance that is supported by control-related processing, to efficient task performance that is supported by domain-specific processing. To investigate this, we replicated the British Lexicon Project, and had participants complete 16 h of LDT over several days. We recorded electroencephalography (EEG) at three intervals to track neural change during LDT performance and assessed event-related potentials and brain signal complexity. We found that response times decreased during LDT performance, and there was evidence of neural change through N170, P200, N400, and late positive component (LPC) amplitudes across the EEG sessions, which suggested a shift from control-related to domain-specific processing. We also found widespread complexity decreases alongside localized increases, suggesting that processing became more efficient with specific increases in processing flexibility. Together, these findings suggest that neural processing becomes more efficient and optimized to support prolonged LDT performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Davide Valeriani ◽  
Caterina Cinel ◽  
Luca Citi ◽  
Riccardo Poli

AbstractIn this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


1991 ◽  
Vol 3 (2) ◽  
pp. 151-165 ◽  
Author(s):  
Helen Neville ◽  
Janet L. Nicol ◽  
Andrew Barss ◽  
Kenneth I. Forster ◽  
Merrill F. Garrett

Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.


Sign in / Sign up

Export Citation Format

Share Document