scholarly journals Validating the wearable MUSE headset for EEG spectral analysis and Frontal Alpha Asymmetry

2021 ◽  
Author(s):  
Cedric Cannard ◽  
Helane Wahbeh ◽  
Arnaud Delorme

EEG power spectral density (PSD), the individual alpha frequency (IAF) and the frontal alpha asymmetry (FAA) are all EEG spectral measures that have been widely used to evaluate cognitive and attentional processes in experimental and clinical settings, and that can be used for real-world applications (e.g., remote EEG monitoring, brain-computer interfaces, neurofeedback, neuromodulation, etc.). Potential applications remain limited by the high cost, low mobility, and long preparation times associated with high-density EEG recording systems. Low-density wearable systems address these issues and can increase access to larger and diversified samples. The present study tested whether a low-cost, 4-channel wearable EEG system (the MUSE) could be used to quickly measure continuous EEG data, yielding similar frequency components compared to research a grade EEG system (the 64-channel BIOSEMI Active Two). We compare the spectral measures from MUSE EEG data referenced to mastoids to those from BIOSEMI EEG data with two different references for validation. A minimal amount of data was deliberately collected to test the feasibility for real-world applications (EEG setup and data collection being completed in under 5 min). We show that the MUSE can be used to examine power spectral density (PSD) in all frequency bands, the individual alpha frequency (IAF; i.e., peak alpha frequency and alpha center of gravity), and frontal alpha asymmetry. Furthermore, we observed satisfying internal consistency reliability in alpha power and asymmetry measures recorded with the MUSE. Estimating asymmetry on PAF and CoG frequencies did not yield significant advantages relative to the traditional method (whole alpha band). These findings should advance human neurophysiological monitoring using wearable neurotechnologies in large participant samples and increase the feasibility of their implementation in real-world settings.

2020 ◽  
Author(s):  
Kuk-In Jang ◽  
Chany Lee ◽  
Sangmin Lee ◽  
Seung Huh ◽  
Jeong-Ho Chae

Abstract Background: Electroencephalography (EEG) frontal alpha asymmetry (FAA) has been observed in several psychiatric disorders. Dominance in left or right frontal alpha activity remains inconsistent in patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls. This study compared FAA among patients with MDD and schizophrenia, and healthy controls.Methods: We recruited 20 patients with MDD, 18 patients with schizophrenia, and 16 healthy individuals. The EEG alpha frequency ranged from 8 Hz to 12 Hz. FAA was expressed as the difference between absolute power values of right and left hemisphere electrodes in the alpha frequency range (common-log-transformed frontal right- and left-hemisphere electrodes: F4–F3, F8–F7, FP2–FP1, AF4–AF3, F6–F5, and F2–F1). Hamilton depression and anxiety rating scales were evaluated in patients with MDD. Positive and negative syndrome scales were evaluated in patients with schizophrenia.Results: Patients with schizophrenia showed significantly lower left FAA than healthy controls (F4–F3, schizophrenia vs. healthy controls: -0.10 ± 0.04 vs. -0.05 ± 0.05). There were no significant differences in FAA between patients with schizophrenia and MDD as well as between patients with MDD and healthy controls.Conclusions: The present study suggests that FAA indicates a relatively lower activation of left frontal electrodes in schizophrenia. The left-lateralized FAA could be a neuropathological attribute in patients with schizophrenia, but a lack of sample size and information such as medication and duration of illness might obscure the interpretation and generalization of our findings. Thus, further studies to verify the findings would be warranted.


2020 ◽  
Author(s):  
Aleksandra Kołodziej ◽  
Mikołaj Magnuski ◽  
Anastasia Ruban ◽  
Aneta Brzezicka

AbstractFor decades, the frontal alpha asymmetry (FAA) - a disproportion in EEG alpha oscillations power between right and left frontal channels - has been one of the most popular measures of depressive disorders (DD) in electrophysiology studies. Patients with DD often manifest a left-sided FAA: relatively higher alpha power in the left versus right frontal lobe. Recently, however, multiple studies failed to confirm this effect, questioning its reproducibility. Our purpose is to thoroughly test the validity of FAA in depression by conducting a multiverse analysis - running many related analyses and testing the sensitivity of the effect to changes in the analytical approach - on data from three independent studies. Only two of the 81 analyses revealed significant results. We conclude the paper by discussing theoretical assumptions underlying the FAA and suggest a list of guidelines for improving and expanding the EEG data analysis in future FAA studies.


2017 ◽  
Vol 30 (6) ◽  
pp. 565-578 ◽  
Author(s):  
Julian Keil ◽  
Daniel Senkowski

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1913
Author(s):  
Inga Dziembowska ◽  
Anna Rasmus ◽  
Samad Esmaeilzadeh ◽  
Monika Wiłkość-Dębczyńska

(1) Background: Affirmative statements are widely recognized as a reliable tool that enhances personal resources to manage life demands, including stress-coping and emotional adaptability. However, recent data suggest that contrary effects can be obtained regarding the global self-esteem level. The current study focused on an approach for recognizing affirmation-induced responses in electroencephalographic (EEG) alpha asymmetry. (2) Methods: EEG data were collected from a total of 45 males (16–20 years) on a baseline condition and compared to EEG data produced when listening to positive self-statements, regarding self-esteem as a covariate. (3) Results: The study revealed relative left-frontal alpha asymmetry, indicating an approach-related motivational state, and right alpha asymmetry in parieto-temporal regions, indicating lower anxiety. This increased with higher self-esteem scores, with a more prominent moderation effect in experimental conditions. These results support and extend previous reports suggesting an adverse effect of positive self-statements for people with lower global self-esteem. (4) Conclusions: Positive self-statements may produce a differing physiological effect regarding an individual’s global self-esteem level, with an adverse effect for people with lower self-esteem scores. These data highlight the need to consider differentiation of psychological approaches between people with higher and lower self-esteem levels.


2020 ◽  
Author(s):  
Kuk-In Jang ◽  
Chany Lee ◽  
Sangmin Lee ◽  
Seung Huh ◽  
Jeong-Ho Chae

Abstract Background: Electroencephalography (EEG) frontal alpha asymmetry (FAA) has been observed in several psychiatric disorders. Dominance in left or right frontal alpha activity remains inconsistent in patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls. This study compared FAA among patients with MDD and schizophrenia, and healthy controls.Methods: We recruited 20 patients with MDD, 18 patients with schizophrenia, and 16 healthy individuals. The EEG alpha frequency ranged from 8 Hz to 12 Hz. FAA was expressed as the difference between absolute power values of right and left hemisphere electrodes in the alpha frequency range (common-log-transformed frontal right- and left-hemisphere electrodes: F4–F3, F8–F7, FP2–FP1, AF4–AF3, F6–F5, and F2–F1). Hamilton depression and anxiety rating scales were evaluated in patients with MDD. Positive and negative syndrome scales were evaluated in patients with schizophrenia.Results: Patients with schizophrenia showed significantly lower left FAA than healthy controls (F4–F3, schizophrenia vs. healthy controls: -0.10 ± 0.04 vs. -0.05 ± 0.05). There were no significant differences in FAA between patients with schizophrenia and MDD as well as between patients with MDD and healthy controls.Conclusions: The present study suggests that FAA indicates a relatively lower activation of left frontal electrodes in schizophrenia. The left-lateralized FAA could be a neuropathological attribute in patients with schizophrenia, but a lack of sample size and information such as medication and duration of illness might obscure the interpretation and generalization of our findings. Thus, further studies to verify the findings would be warranted.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kuk-In Jang ◽  
Chany Lee ◽  
Sangmin Lee ◽  
Seung Huh ◽  
Jeong-Ho Chae

Abstract Background Electroencephalography (EEG) frontal alpha asymmetry (FAA) has been observed in several psychiatric disorders. Dominance in left or right frontal alpha activity remains inconsistent in patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls. This study compared FAA among patients with MDD and schizophrenia, and healthy controls. Methods We recruited 20 patients with MDD, 18 patients with schizophrenia, and 16 healthy individuals. The EEG alpha frequency ranged from 8 Hz to 12 Hz. FAA was expressed as the difference between absolute power values of right and left hemisphere electrodes in the alpha frequency range (common-log-transformed frontal right- and left-hemisphere electrodes: F4–F3, F8–F7, FP2–FP1, AF4–AF3, F6–F5, and F2–F1). Hamilton depression and anxiety rating scales were evaluated in patients with MDD. Positive and negative syndrome scales were evaluated in patients with schizophrenia. Results Patients with schizophrenia showed significantly lower left FAA than healthy controls (F4–F3, schizophrenia vs. healthy controls: − 0.10 ± 0.04 vs. -0.05 ± 0.05). There were no significant differences in FAA between patients with schizophrenia and MDD as well as between patients with MDD and healthy controls. Conclusions The present study suggests that FAA indicates a relatively lower activation of left frontal electrodes in schizophrenia. The left-lateralized FAA could be a neuropathological attribute in patients with schizophrenia, but a lack of sample size and information such as medication and duration of illness might obscure the interpretation and generalization of our findings. Thus, further studies to verify the findings would be warranted.


Author(s):  
Jasmina Wallace ◽  
Lydia Yahia-Cherif ◽  
Christophe Gitton ◽  
Laurent Hugueville ◽  
Jean-Didier Lemaréchal ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aleksandra Kołodziej ◽  
Mikołaj Magnuski ◽  
Anastasia Ruban ◽  
Aneta Brzezicka

For decades, the frontal alpha asymmetry (FAA) – a disproportion in EEG alpha oscillations power between right and left frontal channels – has been one of the most popular measures of depressive disorders (DD) in electrophysiology studies. Patients with DD often manifest a left-sided FAA: relatively higher alpha power in the left versus right frontal lobe. Recently, however, multiple studies failed to confirm this effect, questioning its reproducibility. Our purpose is to thoroughly test the validity of FAA in depression by conducting a multiverse analysis – running many related analyses and testing the sensitivity of the effect to changes in the analytical approach – on data from five independent studies. Only 13 of the 270 analyses revealed significant results. We conclude the paper by discussing theoretical assumptions underlying the FAA and suggest a list of guidelines for improving and expanding the EEG data analysis in future FAA studies.


Sign in / Sign up

Export Citation Format

Share Document