scholarly journals Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials

2021 ◽  
Author(s):  
Carlos Henrique Cardon ◽  
Raphael Ricon de Oliveira ◽  
Victoria Lesy ◽  
Thales Henrique Cherubino Ribeiro ◽  
Luisa Peloso Pereira ◽  
...  

The behavior of florigen(s) and environment-influenced regulatory pathways that control flowering in tropical perennials with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change. To explore this, homologs of Arabidopsis florigen FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CO), PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and FLOWERING LOCUS C (FLC) were isolated from Coffea sp. L. (Rubiaceae). Overexpression of CaFT1 in Arabidopsis showed typical early-flowering and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator, FD, demonstrates that CaFT1 is a coffee orthologue of florigen. Expression of CaFT1 and floral regulators were evaluated over one year using three contrasting genotypes: two C. arabica and one C. canephora. All genotypes showed active CaFT1 transcription from February until October, indicating a potential window for floral induction. CaCO expression, as expected, varied over the day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes. Using coffee as a model, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.

Science ◽  
2018 ◽  
Vol 360 (6392) ◽  
pp. 1014-1017 ◽  
Author(s):  
Min Chen ◽  
Steven Penfield

Plants integrate seasonal signals, including temperature and day length, to optimize the timing of developmental transitions. Seasonal sensing requires the activity of two proteins, FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), that control certain developmental transitions in plants. During reproductive development, the mother plant uses FLC and FT to modulate progeny seed dormancy in response to temperature. We found that for regulation of seed dormancy, FLC and FT function in opposite configuration to how those same genes control time to flowering. For seed dormancy, FT regulates seed dormancy through FLC gene expression and regulates chromatin state by activating antisense FLC transcription. Thus, in Arabidopsis the same genes controlled in opposite format regulate flowering time and seed dormancy in response to the temperature changes that characterize seasons.


2019 ◽  
Vol 70 (15) ◽  
pp. 3941-3953 ◽  
Author(s):  
Ryoma Takeshima ◽  
Haiyang Nan ◽  
Kohei Harigai ◽  
Lidong Dong ◽  
Jianghui Zhu ◽  
...  

Abstract Genes in the FLOWERING LOCUS T (FT) family integrate external and internal signals to control various aspects of plant development. In soybean (Glycine max), FT2a and FT5a play a major role in floral induction, but their roles in post-flowering reproductive development remain undetermined. Ectopic overexpression analyses revealed that FT2a and FT5a similarly induced flowering, but FT5a was markedly more effective than FT2a for the post-flowering termination of stem growth. The down-regulation of Dt1, a soybean orthologue of Arabidopsis TERMINAL FLOWER1, in shoot apices in early growing stages of FT5a-overexpressing plants was concomitant with highly up-regulated expression of APETALA1 orthologues. The Dt2 gene, a repressor of Dt1, was up-regulated similarly by the overexpression of FT2a and FT5a, suggesting that it was not involved in the control of stem termination by FT5a. In addition to the previously reported interaction with FDL19, a homologue of the Arabidopsis bZIP protein FD, both FT2a and FT5a interacted with FDL12, but only FT5a interacted with FDL06. Our results suggest that FT2a and FT5a have different functions in the control of post-flowering stem growth. A specific interaction of FT5a with FDL06 may play a key role in determining post-flowering stem growth in soybean.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 140
Author(s):  
Stefania Bennici ◽  
Giuseppina Las Casas ◽  
Gaetano Distefano ◽  
Alessandra Gentile ◽  
Giuseppe Lana ◽  
...  

In Citrus, flower induction represents the transition from vegetative to reproductive growth. The regulation of flower induction is mainly triggered by exposure to low temperatures and water-deficit stress, which activates the signaling cascade leading to an increased expression of the citrus orthologs of the FLOWERING LOCUS T (CiFT). In this study, the relationship between rootstock and flower induction under Mediterranean field conditions was investigated by monitoring the expression levels of the floral promoter CiFT2 in leaves of the pigmented sweet orange “Tarocco Scirè” grafted onto “C35” citrange and “Swingle” citrumelo rootstocks. The latter two are known to confer, respectively, high and low yield efficiency to the scion. In both rootstock/scion combinations, CiFT2 showed a seasonal expression with a peak during the inductive period in January triggered by cold temperature. The “Tarocco Scirè”/”C35” citrange combination showed the highest expression levels for CiFT2; this increased expression was correlated with yield and a higher number of flowers in the following spring, suggesting a significant effect of rootstocks on flower induction mediated by the overexpression of the CiFT2 gene.


2015 ◽  
pp. pp.00960.2015 ◽  
Author(s):  
Fernando Andres ◽  
Maida Romera-Branchat ◽  
Rafael Martínez-Gallegos ◽  
Vipul Patel ◽  
Korbinian Schneeberger ◽  
...  

2016 ◽  
Author(s):  
Chamindika L. Siriwardana ◽  
Nerina Gnesutta ◽  
Roderick W. Kumimoto ◽  
Daniel S. Jones ◽  
Zachary A. Myers ◽  
...  

AbstractPhotoperiod dependent flowering is one of several mechanisms used by plants to initiate the developmental transition from vegetative growth to reproductive growth. The NUCLEAR FACTOR Y (NF-Y) transcription factors are heterotrimeric complexes composed of NF-YA and histone-fold domain (HFD) containing NF-YB/NF-YC, that initiate photoperiod-dependent flowering by cooperatively interacting with CONSTANS (CO) to drive the expression of FLOWERING LOCUS T (FT). This involves NF-Y and CO binding at distal CCAAT and proximal “CORE” elements, respectively, in the FT promoter. While this is well established for the HFD subunits, there remains some question over the potential role of NF-YA as either positive or negative regulators of this process. Here we provide strong support, in the form of genetic and biochemical analyses, that NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box in the FT promoter and are positive regulators of flowering in an FT-dependent manner.Author SummaryFor plants to have reproductive success, they must time their flowering with the most beneficial biotic and abiotic environmental conditions - after all, reproductive success would likely be low if flowers developed when pollinators were not present or freezing temperatures were on the horizon. Proper timing mechanisms for flowering vary significantly between different species, but can be connected to a variety of environmental cues, including water availability, temperature, and day length. Numerous labs have studied the molecular aspects of these timing mechanisms and discovered that many of these pathways converge on the gene FLOWERING LOCUS T (FT). This means that understanding precisely how this gene is regulated can teach us a lot about many plant species in both natural and agricultural settings. In the current study, we focus on day length as an essential cue for flowering in the plant species Arabidopsis thaliana. We further unravel the complexity of FT regulation by clarifying the roles of NUCLEAR FACTOR Y genes in day length perception.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Hannah A Kinmonth-Schultz ◽  
Melissa J S MacEwen ◽  
Daniel D Seaton ◽  
Andrew J Millar ◽  
Takato Imaizumi ◽  
...  

Abstract We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.


2009 ◽  
Vol 83 (8) ◽  
pp. 3540-3548 ◽  
Author(s):  
Chunyang Li ◽  
Ke Zhang ◽  
Xianwu Zeng ◽  
Stephen Jackson ◽  
Yu Zhou ◽  
...  

ABSTRACT The Arabidopsis flowering locus T (FT) gene encodes the mobile florigen essential for floral induction. While movement of the FT protein has been shown to occur within plants, systemic spread of FT mRNA remains to be unequivocally demonstrated. Utilizing novel RNA mobility assay vectors based on two distinct movement-defective viruses, Potato virus X and Turnip crinkle virus, and an agroinfiltration assay, we demonstrate that nontranslatable FT mRNA, independent of the FT protein, moves throughout Nicotiana benthamiana and mutant Arabidopsis plants and promotes systemic trafficking of viral and green fluorescence protein RNAs. Viral ectopic expression of FT induced flowering in the short-day N. tabacum Maryland Mammoth tobacco under long-day conditions. Recombinant Potato virus X bearing FT RNA spread and established systemic infection more quickly than the parental virus. The cis-acting element essential for RNA movement was mapped to the nucleotides 1 to 102 of the FT mRNA coding sequence. These data demonstrate that a plant self-mobile RNA molecule can mediate long-distance trafficking of heterologous RNAs and raise the possibility that FT RNA, along with the FT protein, may be involved in the spread of the floral stimulus throughout the plant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Su Hyeon Lee ◽  
Cheol Woo Choi ◽  
Kyoung Mi Park ◽  
Wook-Hun Jung ◽  
Hyun Jin Chun ◽  
...  

The proper timing of flowering in response to environmental changes is critical for ensuring crop yields. FLOWERING LOCUS T (FT) homologs of the phosphatidylethanolamine-binding protein family play important roles as floral integrators in many crops. In soybean, we identified 17 genes of this family, and characterized biological functions in flowering for ten FT homologs. Overexpression of GmFT homologs in Arabidopsis revealed that a set of GmFT homologs, including GmFT2a/2b, GmFT3a/3b, and GmFT5a/5b, promoted flowering similar to FT; in contrast, GmFT1a/1b, GmFT4, and GmFT6 delayed flowering. Consistently, expressions of GmFT2a, GmFT2b, and GmFT5a were induced in soybean leaves in response to floral inductive short days, whereas expressions of GmFT1a and GmFT4 were induced in response to long days. Exon swapping analysis between floral activator GmFT2a and floral repressor GmFT4 revealed that the segment B region in the fourth exon is critical for their antagonistic functions. Finally, expression analysis of GmFT2a, GmFT5a, and GmFT4 in soybean accessions exhibiting various flowering times indicated that the mRNA levels of GmFT2a and GmFT5a were higher in early flowering accessions than in late-flowering accessions, while GmFT4 showed the opposite pattern. Moreover, the relative mRNA levels between GmFT2a/GmFT5a and GmFT4 was important in determining day length-dependent flowering in soybean accessions. Taken together, our results suggest that the functions of GmFT homologs have diversified into floral activators and floral repressors during soybean evolution, and the timing of flowering in response to changing day length is determined by modulating the activities of antagonistic GmFT homologs.


Sign in / Sign up

Export Citation Format

Share Document