scholarly journals Calcium and strontium contractile activation properties of single skinned skeletal muscle fibres from elderly women 66-90 years of age

2021 ◽  
Author(s):  
Sue M Ronaldson ◽  
George D Stephenson ◽  
Stewart I Head

The single skinned muscle fibre technique was used to investigate Ca2+- and Sr2+- activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+- activation properties: slow-twitch (type I) fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (<10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+- activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous force oscillations (SOMO) occurring at sub-maximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in womens mobility with aging.

1998 ◽  
Vol 23 (1) ◽  
pp. 74-86 ◽  
Author(s):  
Philip D. Chilibeck ◽  
Gordon J. Bell ◽  
Teresa Socha ◽  
Tom Martin

We evaluated the effect of endurance training (cycling 3 times per week for 12 weeks) on succinate dehydrogenase (SDH) activity in the subsarcolemmal (SS) and intermyofibrillar (IMF) regions of vastus lateralis muscle fibres in 7 individuals (4 females and 3 males). SDH activity of the SS region increased 9.4% and 12.8% in type I and II fibres, respectively (p < .05). SDH activity of the IMF region increased 4.7% and 6.7% in type I and II fibres, respectively (p < .05). This was less than the increase in the SS region (p < .O5). No significant changes were observed in a control group (4 females and 3 males). These data suggest that mitochondria in the SS and IMF regions of human vastus lateralis muscle fibres are sensitive to endurance training. The greater response in the SS region suggests that the metabolic requirements of SS mitochondria were stressed to a greater extent than IMF mitochondria with endurance training. Key words: subsarcolemmal mitochondria, intermyofibrillar mitochondria


1999 ◽  
Vol 86 (1) ◽  
pp. 350-358 ◽  
Author(s):  
Michael J. Castro ◽  
David F. Apple ◽  
Robert S. Staron ◽  
Gerson E. R. Campos ◽  
Gary A. Dudley

This study examined the influence of spinal cord injury (SCI) on affected skeletal muscle. The right vastus lateralis muscle was biopsied in 12 patients as soon as they were clinically stable (average 6 wk after SCI), and 11 and 24 wk after injury. Samples were also taken from nine able-bodied controls at two time points 18 wk apart. Surface electrical stimulation (ES) was applied to the left quadriceps femoris muscle to assess fatigue at these same time intervals. Biopsies were analyzed for fiber type percent and cross-sectional area (CSA), fiber type-specific succinic dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (GPDH) activities, and myosin heavy chain percent. Controls showed no change in any variable over time. Patients showed 27–56% atrophy ( P = 0.000) of type I, IIa, and IIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSA approximately one-third that of controls. Their fiber type specific SDH and GPDH activities increased ( P ≤ 0.001) from 32 to 90% over the 18 wk, thereby approaching or surpassing control values. The relative CSA of type I fibers and percentage of myosin heavy chain type I did not change. There was apparent conversion among type II fiber subtypes; type IIa decreased and type IIax+IIx increased ( P ≤ 0.012). Force loss during ES did not change over time for either group but was greater ( P = 0.000) for SCI patients than for controls overall (27 vs. 9%). The results indicate that vastus lateralis muscle shows marked fiber atrophy, no change in the proportion of type I fibers, and a relative independence of metabolic enzyme levels from activation during the first 24 wk after clinically complete SCI. Over this time, quadriceps femoris muscle showed moderately greater force loss during ES in patients than in controls. It is suggested that the predominant response of mixed human skeletal muscle within 6 mo of SCI is loss of contractile protein. Therapeutic interventions could take advantage of this to increase muscle mass.


2003 ◽  
Vol 28 (3) ◽  
pp. 424-433 ◽  
Author(s):  
Michel J. Johnson ◽  
Gilles Lortie ◽  
Jean-Aimé Simoneau ◽  
Marcel R. Boulay

The purpose of the present study was to evaluate the pattern of change in muscular glycogen content in response to high-frequency electrical stimulation (HFES). Muscle biopsies were taken from the vastus lateralis muscle of 7 healthy young men before, 15 min after, and 30 min after electrical stimulation delivered at a 50-Hz frequency (15 s on, 45 s off) at an intensity of 100 mA. The glycogen content of type I, IIA, and IIB muscle fibres was evaluated using microphotometry of periodic acid Schiff (PAS) stained fibres. After 15 min of electrical stimulation, the glycogen content in type I, IIA, and IIB muscle fibres significantly decreased from 113 ± 10 (mean ± SE) to 103 ± 10 (p ≤ 0.05), 129 ± 9 to 102 ± 12 (p ≤ 0.01), and 118 ± 8 to 90 ± 13 (p ≤ 0.01) arbitrary relative units, respectively. No further decrement in glycogen content was observed in all three fibre types following an additional 15 min of HFES. In addition, isometric force decreased by approximately 50%, from 125.9 ± 20.0 N to 64.2 ± 7.7 N (p ≤ 0.01), during the first 15 contractions. No further decrease in isometric force was observed following an additional 15 contractions of HFES. These results reveal that significant reductions in isometric force of knee extensor muscles and glycogen content of all human skeletal muscle fibre types in vastus lateralis muscle are observable after 15 min of neuromuscular high-frequency transcutaneous electrical stimulation. Key words: energy metabolism, isometric strength


2007 ◽  
Vol 102 (6) ◽  
pp. 2346-2351 ◽  
Author(s):  
E. Rullman ◽  
H. Rundqvist ◽  
D. Wågsäter ◽  
H. Fischer ◽  
P. Eriksson ◽  
...  

The aims of this study were 1) to characterize changes in matrix metalloproteinase (MMP), endostatin, and vascular endothelial growth factor (VEGF)-A expression in skeletal muscle in response to a single bout of exercise in humans; and 2) to determine if any exchange of endostatin and VEGF-A between circulation and the exercising leg is associated with a change in the tissue expression or plasma concentration of these factors. Ten healthy males performed 65 min of cycle exercise, and muscle biopsies were obtained from the vastus lateralis muscle at rest and immediately and 120 min after exercise. In the muscle biopsies, measurements of mRNA expression levels of MMP-2, MMP-9, MMP-14, and tissue inhibitor of metalloproteinase; VEGF and endostatin protein levels; and MMP activities were performed. Femoral arterial and venous concentrations of VEGF-A and endostatin were determined before, during, and 120 min after exercise. A single bout of exercise increased MMP-9 mRNA and activated MMP-9 protein in skeletal muscle. No measurable increase of endostatin was observed in the skeletal muscle or in plasma following exercise. A concurrent increase in skeletal muscle VEGF-A mRNA and protein levels was induced by exercise, with no signs of peripheral uptake from the circulation. However, a decrease in plasma VEGF-A concentration occurred following exercise. Thus 1) a single bout of exercise activated the MMP system without any resulting change in tissue endostatin protein levels, and 2) the increased VEGF-A protein levels are due to changes in the skeletal muscle tissue itself. Other mechanisms are responsible for the observed exercise-induced decrease in VEGF-A in plasma.


1989 ◽  
Vol 260 (2) ◽  
pp. 443-448 ◽  
Author(s):  
M E Everts ◽  
J P Andersen ◽  
T Clausen ◽  
O Hansen

The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.


2018 ◽  
Vol 315 (2) ◽  
pp. H242-H253 ◽  
Author(s):  
Masashi Ichinose ◽  
Mikie Nakabayashi ◽  
Yumie Ono

We used diffuse correlation spectroscopy to investigate sympathetic vasoconstriction, local vasodilation, and integration of these two responses in the skeletal muscle microvasculature of 20 healthy volunteers. Diffuse correlation spectroscopy probes were placed on the flexor carpi radialis muscle or vastus lateralis muscle, and a blood flow index was derived continuously. We measured hemodynamic responses during sympathoexcitation induced by forehead cooling, after which the effects of the increased sympathetic tone on vasodilatory responses during postocclusive reactive hyperemia (PORH) were examined. PORH was induced by releasing arterial occlusion (3 min) in an arm or leg. To increase sympathetic tone during PORH, forehead cooling was begun 60 s before the occlusion release and ended 60 s after the release. During forehead cooling, mean arterial pressure rose significantly and was sustained at an elevated level. Significant vasoconstriction and decreases in blood flow index followed by gradual blunting of the vasoconstriction also occurred. The time course of these responses is in good agreement with previous observations in animals. The acute sympathoexcitation diminished the peak vasodilation during PORH only in the vastus lateralis muscle, but it hastened the decline in vasodilation after the peak in both the flexor carpi radialis muscle and vastus lateralis muscle. Consequently, the total vasodilatory response assessed as the area of the vascular conductance during the first minute of PORH was significantly diminished in both regions. We conclude that, in humans, the integrated effects of sympathetic vasoconstriction and local vasodilation have an important role in vascular regulation and control of perfusion in the skeletal muscle microcirculation. NEW & NOTEWORTHY We used diffuse correlation spectroscopy to demonstrate that acute sympathoexcitation constrains local vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. This finding indicates that integration of sympathetic vasoconstriction and local vasodilation is importantly involved in vascular regulation and the control of perfusion of the skeletal muscle microcirculation in humans.


2004 ◽  
Vol 287 (1) ◽  
pp. E8-E15 ◽  
Author(s):  
Aidar R. Gosmanov ◽  
Guillermo E. Umpierrez ◽  
Ana H. Karabell ◽  
Ruben Cuervo ◽  
Donald B. Thomason

Although a pharmacological dose of insulin produces a dramatic increase in phosphorylation and activity of Akt isoforms 1 and 2 in mammalian skeletal muscle, few studies have examined the effect of physiological concentrations of insulin on the phosphorylation of Akt-1 and -2 in normal and diabetic tissue. This study examined the patterns of insulin-stimulated Akt isoform phosphorylation and protein expression in muscle biopsies obtained from obese patients with atypical diabetes immediately after a hyperglycemic crisis and again after near-normoglycemic remission. In obese patients with new-onset diabetes mellitus presenting with hyperglycemic crisis (plasma glucose 30.5 ± 4.8 mM), in vitro stimulation of vastus lateralis muscle biopsies with 100 μU/ml (0.6 nM) insulin increased insulin receptor phosphorylation threefold and Akt-1 phosphorylation on Ser473 twofold, whereas Akt-2 phosphorylation was not stimulated. After 10-wk intensive insulin therapy that led to near-normoglycemic remission and discontinuation of insulin therapy, both Akt-2 expression and insulin-stimulated Akt-2 Ser474 phosphorylation doubled. Hyperglycemic crisis did not affect insulin-stimulated threonine phosphorylation of either Akt-1 or Akt-2. The decreased Akt-2 expression at presentation was accompanied by reduced GLUT4 protein expression and increased expression of enzymes counterregulatory to insulin action. Thus a physiological concentration of insulin stimulated Akt-1 and Akt-2 phosphorylation in human skeletal muscle in the absence of hyperglycemia, but Akt-2 expression and stimulation appeared to be impaired in muscle of obese patients with atypical diabetes presenting with severe hyperglycemia.


1989 ◽  
Vol 67 (2) ◽  
pp. 592-598 ◽  
Author(s):  
M. Mizuno ◽  
N. H. Secher

The relative occurrence of slow-twitch (ST) and fast-twitch (FTa and FTb) fibers, fiber size, and capillary supply in internal (INT) and external intercostal muscles (EXT), the costal diaphragm (DIA), and vastus lateralis muscle (VAS) was examined post-mortem in eight healthy males. The relative occurrence of ST fibers in INT [64 +/- 3% (SE)] and EXT (62 +/- 3%) was similar but higher than in DIA (49 +/- 3%) and VAS (40 +/- 6%; P less than 0.05). The occurrence of FTa fibers in expiratory INT (35 +/- 3%) was higher than in inspiratory INT and EXT (17 +/- 1%; P less than 0.05) but similar to DIA (28 +/- 6%) and VAS (32 +/- 2%). Accordingly, expiratory INT had fewer FTb fibers (1 +/- 1%) than the others (P less than 0.05). Expiratory INT had a 60% larger fiber area than inspiratory INT and EXT and DIA (P less than 0.05), but the area was similar to that of VAS. The number of capillaries per fiber was higher in expiratory INT (2.3 +/- 0.1) than in inspiratory INT and EXT (1.6 +/- 0.1), DIA (1.9 +/- 0.1), and VAS (1.8 +/- 0.2; P less than 0.05). The results suggest that the occurrence of many large capillary-rich FTa fibers in expiratory INT is bound to function (expiratory vs. inspiratory) rather than to anatomy (INT vs. EXT).


Sign in / Sign up

Export Citation Format

Share Document