scholarly journals Photochemical pre-bleaching of formalin-fixed archival prostate tissues significantly reduces autofluorescence to facilitate multiplex immunofluorescence staining

2021 ◽  
Author(s):  
Alan K Meeker ◽  
Christopher M Heaphy ◽  
Christine M Davis ◽  
Sujayita Roy ◽  
Elizabeth A Platz

The characterization of tissues using multiple different primary antibodies detected by secondary antibodies, each possessing a different colored fluorophore (multiplex immunofluorescence), is a powerful technique but often impaired by endogenous autofluorescence present in the specimen. Our current research involves the use of multiplex immunofluorescence to identify specific cell phenotypes within the tumor microenvironment in archival formalin-fixed paraffin-embedded human prostate cancer tissue specimens. These specimens frequently possess high levels of autofluorescence, in part due to the biological age of the tissues and long storage times. This autofluorescence interferes with and, in the worst cases, completely obscures the desired immunofluorescent signals, thus impeding analyses by decreasing signal-to-noise. Here, we demonstrate that a recently published protocol for photochemical bleaching significantly decreases autofluorescence (80% average decrease of the brightest autofluorescent signals), across the visible spectrum, in fixed, archival prostate tissue specimens from aged men, that have been sectioned onto glass slides and stored for several months. Importantly, the method is compatible with subsequent immunofluorescence staining and yields markedly improved signal-to-noise. Inclusion of this photobleaching method should facilitate studies employing multiplex immunofluorescence in sections cut from archival fixed human prostate tissues.

2016 ◽  
Vol 54 (11) ◽  
pp. 2798-2803 ◽  
Author(s):  
Elham Salehi ◽  
Mohammad T. Hedayati ◽  
Jan Zoll ◽  
Haleh Rafati ◽  
Maryam Ghasemi ◽  
...  

In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus , Fusarium , Scedosporium , and the Mucormycetes . The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus , Aspergillus flavus , Aspergillus terreus , Aspergillus niger , Fusarium oxysporum , Fusarium solani , Scedosporium apiospermum , Rhizopus oryzae , Rhizopus microsporus , Mucor spp., and Syncephalastrum . Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus , S. apiospermum , and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus . Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.


2020 ◽  
Vol 19 ◽  
pp. 153303382096076
Author(s):  
Peng Qi ◽  
Qian-ming Bai ◽  
Qian-lan Yao ◽  
Wen-tao Yang ◽  
Xiao-yan Zhou

This study aimed to compare the performance of MilliSect dissection and manual dissection. Twenty-five formalin-fixed paraffin-embedded (FFPE) breast cancer tissue blocks were selected for comparison. Specific areas of interest (AOIs) in invasive carcinoma on tissue sections were transferred to dissection slides by manual macrodissection or the MilliSect instrument. The comparison criteria were 1) the time required for dissection; 2) RNA concentration and purity; 3) RNA quantity of 5 housekeeping genes (by RT-qPCR); and 4) ER, PR, HER2, Ki-67 and recurrence score (RS) values (by the 21-gene assay). Then, tumor-adjacent tissues, including fibrocollagenous and epithelial tissues, from the same selected tissue blocks of 8 of 25 patients were scraped using the mesodissection method, and their RS values were assessed to evaluate the influence of tumor-adjacent tissues on the target AOIs. Ultimately, 4 AOIs of invasive ductal carcinoma (IDC) from 1 tissue block of another 4 patients with lymph node (LN) metastases each, LN tissue and a mixture of IDC and LN tissue from the other tissue block of the same 4 patients were mesodissected to evaluate the influence of infiltrating lymphocyte levels on the RS values of AOIs. In our experience, the MilliSect instrument, which provides process management documentation, required more time than manual macrodissection (on average, approximately 9.1 min per sample versus 5.8 min per sample, respectively). The RNA yield and quality of the dissected tissues were comparable for the 2 methods. However, the tumor-adjacent tissues of the AOIs may influence the RS to some extent. Tumor-infiltrating lymphocytes (TILs) can dramatically increase RSs, far exceeding the influence of tumor-adjacent fibrocollagenous and epithelial tissues. In conclusion, MilliSect mesodissection is comparable to manual dissection. This mesodissection tool may facilitate AOI alignment and the dissection process for the 21-gene RS assay. Samples whose adjacent tissues are intermixed with TILs warrant special attention.


2006 ◽  
Vol 54 (7) ◽  
pp. 773-780 ◽  
Author(s):  
Kiyohiro Hamatani ◽  
Hidetaka Eguchi ◽  
Keiko Takahashi ◽  
Kazuaki Koyama ◽  
Mayumi Mukai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document