scholarly journals Cell Painting predicts impact of lung cancer variants

2021 ◽  
Author(s):  
Juan C Caicedo ◽  
John Arevalo ◽  
Federica Piccioni ◽  
Mark-Anthony Bray ◽  
Cathy L Hartland ◽  
...  

Most variants in most genes across most organisms have an unknown impact on the function of the corresponding gene. This gap in knowledge is especially acute in cancer, where clinical sequencing of tumors now routinely reveals patient-specific variants whose functional impact on the corresponding gene is unknown, impeding clinical utility. Transcriptional profiling was able to systematically distinguish these variants of unknown significance (VUS) as impactful vs. neutral in an approach called expression-based variant-impact phenotyping (eVIP). We profiled a set of lung adenocarcinoma-associated somatic variants using Cell Painting, a morphological profiling assay that captures features of cells based on microscopy using six stains of cell and organelle components. Using deep-learning-extracted features from each cell's image, we found that cell morphological profiling (cmVIP) can predict variants' functional impact and, particularly at the single-cell level, reveals biological insights into variants which can be explored in our public online portal. Given its low cost, convenient implementation, and single-cell resolution, cmVIP profiling therefore seems promising as an avenue for using non-gene-specific assays to systematically assess the impact of variants, including disease-associated alleles, on gene function.

Author(s):  
Bian Li ◽  
Jeffrey L. Mendenhall ◽  
Brett M. Kroncke ◽  
Keenan C. Taylor ◽  
Hui Huang ◽  
...  

2020 ◽  
Vol 117 (46) ◽  
pp. 28784-28794
Author(s):  
Sisi Chen ◽  
Paul Rivaud ◽  
Jong H. Park ◽  
Tiffany Tsou ◽  
Emeric Charles ◽  
...  

Single-cell measurement techniques can now probe gene expression in heterogeneous cell populations from the human body across a range of environmental and physiological conditions. However, new mathematical and computational methods are required to represent and analyze gene-expression changes that occur in complex mixtures of single cells as they respond to signals, drugs, or disease states. Here, we introduce a mathematical modeling platform, PopAlign, that automatically identifies subpopulations of cells within a heterogeneous mixture and tracks gene-expression and cell-abundance changes across subpopulations by constructing and comparing probabilistic models. Probabilistic models provide a low-error, compressed representation of single-cell data that enables efficient large-scale computations. We apply PopAlign to analyze the impact of 40 different immunomodulatory compounds on a heterogeneous population of donor-derived human immune cells as well as patient-specific disease signatures in multiple myeloma. PopAlign scales to comparisons involving tens to hundreds of samples, enabling large-scale studies of natural and engineered cell populations as they respond to drugs, signals, or physiological change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna E. Patrick ◽  
Eden M. Lyons ◽  
Lisa Ishii ◽  
Alan S. Boyd ◽  
Joseph M. Choi ◽  
...  

Neonatal multisystem onset inflammatory disorder (NOMID) is a severe autoinflammatory syndrome that can have an initial presentation as infantile urticaria. Thus, an immediate recognition of the clinical symptoms is essential for obtaining a genetic diagnosis and initiation of early therapies to prevent morbidity and mortality. Herein, we describe a neonate presenting with urticaria and systemic inflammation within hours after birth who developed arthropathy and neurologic findings. Pathologic evaluation of the skin revealed an infiltration of lymphocytes, eosinophils, and scattered neutrophils. Genetic analysis identified a novel heterozygous germline variant of unknown significance in the NLRP3 gene, causing the missense mutation M408T. Variants of unknown significance are common in genetic sequencing studies and are diagnostically challenging. Functional studies of the M408T variant demonstrated enhanced formation and activity of the NLRP3 inflammasome, with increased cleavage of the inflammatory cytokine IL-1β. Upon initiation of IL-1 pathway blockade, the infant had a robust response and improvement in clinical and laboratory findings. Our experimental data support that this novel variant in NLRP3 is causal for this infant’s diagnosis of NOMID. Rapid assessment of infantile urticaria with biopsy and genetic diagnosis led to early recognition and targeted anti-cytokine therapy. This observation expands the NOMID-causing variants in NLRP3 and underscores the role of genetic sequencing in rapidly identifying and treating autoinflammatory disease in infants. In addition, these findings highlight the importance of establishing the functional impact of variants of unknown significance, and the impact this knowledge may have on therapeutic decision making.


2019 ◽  
Author(s):  
Sathiya N. Manivannan ◽  
Sihem Darouich ◽  
Aida Masmoudi ◽  
David Gordon ◽  
Gloria Zender ◽  
...  

AbstractHypertrophic cardiomyopathy (HCM) is characterized by enlargement of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the C-terminal EF-hand (CEF) domain. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stopgain variants that lead to loss of the CEF domain are stably expressed. However, stopgain variants show impaired localization suggesting a functional role for the CEF domain. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither MYL2-fs nor MYL2:p.Gly162Arg supports regular cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathies.Author SummaryWe report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease in the proband and not in the parents who are carriers of the variant. This is in contrast to other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences in the disease pathology. We also show different protein domain requirement for stability and localization of MYL2 in cardiomyocytes. Further, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of diseases where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5120-5120
Author(s):  
Sophia Miliara ◽  
Bogumil Kaczkowski ◽  
Takahiro Suzuki ◽  
Huthayfa Mujahed ◽  
Maasaki Furuno ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is the most common myeloid leukemia in adults. Although substantial progress has been made in recent years, the long-term prognosis for patients remains poor which is mainly due to the dated treatments that consist of cytotoxic drugs with low specificity. AML is a clonal disease with multiple co-existing clones in each patient. Often, patients that initially respond to treatment may develop resistance due to lingering leukemic stem cells (LSC), or sub-clones that survive the treatment and cause a relapse. Therefore, novel therapeutic strategies are needed to fully eradicate all leukemic cells. AML has a strong epigenetic component meaning mutations in genes encoding epigenetic regulators are frequently acquired during early AML development, and are present in the initiating clones. Thus, targeting the epigenetic machinery may offer a new avenue for AML treatment. Among the newer epigenetic drugs are BET inhibitors, which bind reversibly to bromodomains of BRD proteins and prevent protein-protein interactions with acetylated histones and transcriptions factors. One of the most promising BET inhibitors is OTX015, which has already been in Phase II clinical trials for AML in the U.S. (Braun & Gardin, Expert Opinion on Investigational Drugs, 2017). We aim to analyze the heterogeneous response to OTX015 in AML, and normal stem/progenitor, cells in order to dissect the BET-inhibitor response. The main focus is the specific transcriptional signatures at promoters and enhancers as enhancers, and especially super-enhancers, have previously been shown to be sensitive to BET-inhibitors (Loven et al, Cell, 2013). To this effect, we have established a protocol that allowed for the transcriptional profiling of single cells from AML patients that were at different differentiation stages, using FACS- sorting. The patients were obtained from the Swedish Acute Leukemia Registry. To decrease population heterogeneity, the project focused on distinct subgroups of AML that previously has been shown to be sensitive for BET inhibitors. The different isolated AML, and normal progenitor populations, were exposed to OTX015 for 48hrs, and processed with both bulk transcriptional profiling of the general cell population response, and single cell profiling to analyze cell heterogeneity, and single cell response. For the transcriptional profiling, we utilized a unique technique called Cap Analysis of Gene Expression (CAGE), a powerful 5' start profiling technology, that allows for the identification of the transcription start site at base pair resolution, and determination of enhancer activity based on enhancer RNA expression. The single cell profiling was performed using C1 CAGE, which is a single-cell implementation CAGE (Kouno et al, bioRxiv 330845, 2018).We envision that the heterogenic transcriptional drug response, on the single-cell level, in AML and normal stem/progenitor cells will lead to the identification of key genes and pathways involved in the differential drug response. Additionally, the application of CAGE technology will lead to discovery of specific transcriptional signatures at promoters and enhancers that may be predictive of drug resistance. Clinical significance: Leukemic cell heterogeneity remains the main problem in AML, as chemotherapy often fails to completely eradicate all AML sub-clones including LSC, leading to relapses and high mortality of the disease. This study will shed light to the unique features of AML cell heterogeneity and how their drug response differs, not only between AML cells, but also between AML cells and their normal counterparts, on the single-cell level, based on the response to OTX015. The significance will be two-fold: the in-depth characterization of the features in AML populations and normal cells, and the potential this study will provide for novel, more targeted, combination treatments in AML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Matthew Ryan Sullivan ◽  
Giovanni Stefano Ugolini ◽  
Saheli Sarkar ◽  
Wenjing Kang ◽  
Evan Carlton Smith ◽  
...  

AbstractThe inhibition of the PD1/PDL1 pathway has led to remarkable clinical success for cancer treatment in some patients. Many, however, exhibit little to no response to this treatment. To increase the efficacy of PD1 inhibition, additional checkpoint inhibitors are being explored as combination therapy options. TSR-042 and TSR-033 are novel antibodies for the inhibition of the PD1 and LAG3 pathways, respectively, and are intended for combination therapy. Here, we explore the effect on cellular interactions of TSR-042 and TSR-033 alone and in combination at the single-cell level. Utilizing our droplet microfluidic platform, we use time-lapse microscopy to observe the effects of these antibodies on calcium flux in CD8+ T cells upon antigen presentation, as well as their effect on the cytotoxic potential of CD8+ T cells on human breast cancer cells. This platform allowed us to investigate the interactions between these treatments and their impacts on T-cell activity in greater detail than previously applied in vitro tests. The novel parameters we were able to observe included effects on the exact time to target cell killing, contact times, and potential for serial-killing by CD8+ T cells. We found that inhibition of LAG3 with TSR-033 resulted in a significant increase in calcium fluctuations of CD8+ T cells in contact with dendritic cells. We also found that the combination of TSR-042 and TSR-033 appears to synergistically increase tumor cell killing and the single-cell level. This study provides a novel single-cell-based assessment of the impact these checkpoint inhibitors have on cellular interactions with CD8+ T cells.


2019 ◽  
Author(s):  
Tina N. Tran ◽  
John C. Schimenti

ABSTRACTA major challenge in medical genetics is to characterize variants of unknown significance (VUS), so as to better understand underlying causes of disease and design customized treatments. Infertility has presented an especially difficult challenge with respect to not only determining if a given patient has a genetic basis, but also to identify the causative genetic factor(s). Though genome sequencing can identify candidate variants, in silico predictions of causation are not always sufficiently reliable so as to be actionable. Thus, experimental validation is crucial. Here, we describe the phenotype of mice containing a nonsynonymous (proline-to-threonine at position 306) change inSpo11, corresponding to human SNP rs185545661. SPO11 is a topoisomerase-like protein that is essential for meiosis because it induces DNA double stranded breaks (DSBs) that stimulate pairing and recombination of homologous chromosomes.Although both male and femaleSpo11P306T/P306Tmice were fertile, they had reduced sperm and oocytes, respectively. Spermatocyte chromosomes exhibited synapsis defects (especially between the X and Y chromosomes), elevated apoptotic cells, persistent markers of DSBs, and most importantly, fewer Type 1 crossovers that causes some chromosomes to have none.Spo11P306T/−mice were sterile and made fewer meiotic DSBs thanSpo11+/−animals, suggesting that theSpo11P306Tallele is a hypomorph and likely is delayed in making sufficient DSBs in a timely fashion. If the consequences are recapitulated in humans, it would predict phenotypes of premature ovarian failure, reduced sperm counts, and possible increased number of aneuploid gametes. These results emphasize the importance of deep phenotyping in order to accurately assess the impact of VUSs in reproduction genes.


Author(s):  
Ashlee Long ◽  
Hui Liu ◽  
Jian Liu ◽  
Michael Daniel ◽  
David Bedwell ◽  
...  

We have created a panel of twenty-nine NF1 variant cDNAs representing benign missense (MS) variants, pathogenic MS variants, many with clinically relevant phenotypes, in-frame deletions, splice variants, and nonsense (NS) variants. We have determined the functional consequences of the variants, assessing their ability to produce mature neurofibromin and restore Ras signaling activity in NF1 null (-/-) cells. cDNAs demonstrate variant-specific differences in neurofibromin protein levels, suggesting that some variants lead to protein instability or enhanced degradation. When expressed at high levels, some variant proteins are still able to repress Ras activity, indicating that the NF1 phenotype may be due to protein instability. In contrast, other variant proteins are incapable of repressing Ras activity, indicating that some do not functionally engage Ras and stimulate GTP-ase activity. We observed that stability and Ras activity can be mutually exclusive. These assays allow us to categorize variants by functional effects, may help to classify variants of unknown significance, and may have future implications for more directed therapeutics.


Sign in / Sign up

Export Citation Format

Share Document