scholarly journals Laser Ablation and Fluid Flows Show a Single Force Mechanism Governs Spindle Positioning

2021 ◽  
Author(s):  
Hai-Yin Wu ◽  
Gökberk Kabacaoğlu ◽  
Ehssan Nazockdast ◽  
Huan-Cheng Chang ◽  
Michael J Shelley ◽  
...  

Few techniques are available for elucidating the nature of forces that drive subcellular behaviors. Here we develop two complementary ones: 1) femtosecond stereotactic laser ablation (FESLA), which rapidly creates complex cuts of subcellular structures, thereby allowing precise dissection of when, where, and in what direction forces are generated; and 2) assessment of subcellular fluid flows, by comparing direct flow measurements, using microinjected fluorescent nanodiamonds, to large-scale fluid-structure simulations of different models of force transduction. We apply these to study centrosomes in Caenorhabditis elegans early embryos, and use the data to construct a biophysically-based model of centrosome dynamics. Taken together, we demonstrate that cortical pulling forces provide a general explanation for many behaviors mediated by centrosomes, including pronuclear migration/centration and rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. In sum, this work establishes new methodologies for disentangling the forces responsible for cell biological phenomena.

2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


2020 ◽  
Author(s):  
Benjamin Brigaud ◽  
et al.

Supplemental text, Tables S1 and S2, and Figures S1–S3 (petrographical descriptions, clumped Δ<sub>47</sub>7 and U-Pb methods); and Table S3 (detailed laser ablation–inductively coupled plasma–mass spectrometry U-Pb data).<br>


1983 ◽  
Vol 29 (103) ◽  
pp. 461-479 ◽  
Author(s):  
John Shaw

AbstractDrumlin forms are described from maps and air photographs of a part of the Athabasca Plains, northern Saskatchewan. Three major forms, spindle, parabolic and transverse asymmetrical are recognized. These forms, which may show superimposed minor elements, depart from classical descriptions of drumlins, but are similar to moulds of erosional marks created by separated fluid flows. Assemblages of drumlins also show characteristics similar to those of erosional marks. The form analogy between drumlins and moulds of erosional marks is carried to a conclusion that drumlins may be formed by the infilling of erosional marks created on the under-side of glaciers by separated, subglacial melt-water flows. Estimates of specific discharge are obtained by means of an expected range of Reynolds number. Geomorphological evidence is given for large-scale erosion by subglacial melt water. A discussion of the sedimentology, stratigraphy, and deformational structure of the interiors of drumlins shows that they may be explained by the erosional-mark hypothesis. This paper emphasizes the importance of melt water as a geomorphic agent and may have broad implications for ice-sheet dynamics and profiles, rates of deglaciation, and the occurrence of bedrock thrusting by ice.


Author(s):  
Roger W. Ainsworth ◽  
John L. Allen ◽  
J. Julian M. Batt

The advent of a new generation of transient rotating turbine simulation facilities, where engine values of Reynolds and Mach number are matched simultaneously together with the relevant rotational parameters for dimensional similitude (Dunn et al [1988], Epstein et al [1984]. Ainsworth et al [1988]), has provided the stimulus for developing improved instrumentation for investigating the aerodynamic flows in these stages. Much useful work has been conducted in the past using hot-wire and laser anemometers. However, hot-wire anemometers are prone to breakage in the high pressure flows required for correct Reynolds numbers, Furthermore some laser techniques require a longer runtime than these transient facilites permit, and generally yield velocity information only, giving no data on loss production. Advances in semiconductor aerodynamic probes are beginning to fulfil this perceived need. This paper describes advances made in the design, construction, and testing of two and three dimensional fast response aerodynamic probes, where semiconductor pressure sensors are mounted directly on the surface of the probes, using techniques which have previously been successfully used on the surface of rotor blades (Ainsworth, Dietz and Nunn [1991]). These are to be used to measure Mach number and flow direction in compressible unsteady flow regimes. In the first section, a brief review is made of the sensor and associated technology which has been developed to permit a flexible design of fast response aerodynamic probe. Following this, an extensive programme of testing large scale aerodynamic models of candidate geometries for suitable semiconductor scale probes is described, and the results of these discussed. The conclusions of these experiments, conducted for turbine representative mean and unsteady flows, yielded new information for optimising the design of the small scale semiconductor probes, in terms of probe geometry, sensor placement, and aerodynamic performance. Details are given of a range of wedge and pyramid semiconductor probes constructed, and the procedures used in calibrating and making measurements with them. Differences in performance are discussed, allowing the experimenter to choose an appropriate probe for the particular measurement required. Finally, the application of prototype semiconductor probes in a transient rotor experiment at HP turbine representative conditions is described, and the data so obtained is compared with (PD solutions of the unsteady viscous flow-field.


2021 ◽  
Author(s):  
Yogi Suardiwerianto ◽  
Sofyan Kurnianto ◽  
Adibtya Asyhari ◽  
Tubagus Muhamad Risky ◽  
Muhammad Fikky Hidayat ◽  
...  

&lt;p&gt;Transpiration is a key process in the terrestrial ecosystems linking water, carbon, and energy exchanges between the vegetation and the atmosphere. However, the understanding of transpiration rate, its spatiotemporal dynamics, and the controlling factors in tropical peatlands are still constrained by limited measurements. This study aims to investigate the transpiration rates at the stand level of Acacia plantation under different groundwater levels. The measurements were performed at two large-scale lysimeter plots with groundwater level of 40 and 80 cm below the ground surface. The transpiration rate was quantified based on sap flow measurements from 16 trees with different diameters at breast height using heat ratio method. The initial results indicate that the transpiration rate was closely correlated to the meteorological parameters, including atmospheric vapor pressure deficit and solar radiation. The two plots with different groundwater level regimes exhibit the same diurnal pattern of transpiration rate yet shows differences in their magnitude. The findings from this study will improve the understanding about relative contribution of transpiration to the total water balance under different groundwater levels. Further, an ongoing measurement of above and below-ground biomass growth and hydrological modeling work will advance the knowledge on plant-water interaction from this ecosystem.&lt;/p&gt;


2020 ◽  
Vol 52 (1) ◽  
pp. 477-508 ◽  
Author(s):  
Steven L. Brunton ◽  
Bernd R. Noack ◽  
Petros Koumoutsakos

The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from experiments, field measurements, and large-scale simulations at multiple spatiotemporal scales. Machine learning (ML) offers a wealth of techniques to extract information from data that can be translated into knowledge about the underlying fluid mechanics. Moreover, ML algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of ML for fluid mechanics. We outline fundamental ML methodologies and discuss their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experiments, and simulations. ML provides a powerful information-processing framework that can augment, and possibly even transform, current lines of fluid mechanics research and industrial applications.


Author(s):  
Carlos Arroyo Osso ◽  
T. Gunnar Johansson ◽  
Fredrik Wallin

In most designs of two-spool turbofan engines, intermediate turbine duct (ITD’s) are used to connect the high-pressure turbine (HPT) with the low-pressure turbine (LPT). Demands for more efficient engines with reduced emissions require more “aggressive ducts”, ducts which provide both a higher radial offset and a larger area ratio in the shortest possible length, while maintaining low pressure losses and avoiding non-uniformities in the outlet flow that might affect the performance of the downstream LPT. The work presented in this paper is part of a more comprehensive experimental and computational study of the flowfield and the heat transfer in an aggressive ITD. The main objectives of the study were to obtain an understanding of the mechanisms governing the heat transfer in ITD’s and to obtain high quality experimental data for the improvement of the CFD-based design tools. This paper consists of two parts. The first one, this one, presents and discusses the results of the experimental study. In the second part, a comparison between the experimental results and a numerical analysis is presented. The duct studied was a state-of-the-art “aggressive” design with nine thick non-turning structural struts. It was tested in a large-scale low-speed experimental facility with a single-stage HPT. In this paper measurements of the steady convective heat transfer coefficient (HTC) distribution on both endwalls and on the strut for the duct design inlet conditions are presented. The heat transfer measurement technique used is based on infrared-thermography. Part of the results of the flow measurements is also included.


Author(s):  
Si Young Lee ◽  
Robert A. Dimenna ◽  
Richard A. Leishear ◽  
David B. Stefanko

Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump (ADMP) for sludge mixing and removal operations in one of the large-scale Savannah River Site (SRS) waste tanks, Tank 18. This paper is the first in a series of four that describe the computational model and its validation, the experiment facility and the flow measurements used to provide the validation data, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations using the new ADMP. A computational fluid dynamics (CFD) approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model, since this approach was verified by both test and literature data. The discharge of the ADMP was modeled as oppositely directed hydraulic jets submerged at the center of the 85-ft diameter tank, with pump suction taken from below. The calculations were based on prototypic tank geometry and nominal operating conditions. In the analysis, the magnitude of the local velocity was used as a measure of slurrying and suspension capability. The computational results showed that normal operations in Tank 18 with the ADMP mixer and a 70-in liquid level would provide adequate sludge removal in most regions of the tank. The exception was the region within about 1.2 ft of the tank wall, based on an historical minimum velocity required to suspend sludge. Sensitivity results showed that a higher tank liquid level and a lower elevation of pump nozzle would result in better performance in suspending and removing the sludge. These results were consistent with experimental observations.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Tuan-Minh Nguyen ◽  
Adib Shafi ◽  
Tin Nguyen ◽  
Sorin Draghici

Abstract Background Many high-throughput experiments compare two phenotypes such as disease vs. healthy, with the goal of understanding the underlying biological phenomena characterizing the given phenotype. Because of the importance of this type of analysis, more than 70 pathway analysis methods have been proposed so far. These can be categorized into two main categories: non-topology-based (non-TB) and topology-based (TB). Although some review papers discuss this topic from different aspects, there is no systematic, large-scale assessment of such methods. Furthermore, the majority of the pathway analysis approaches rely on the assumption of uniformity of p values under the null hypothesis, which is often not true. Results This article presents the most comprehensive comparative study on pathway analysis methods available to date. We compare the actual performance of 13 widely used pathway analysis methods in over 1085 analyses. These comparisons were performed using 2601 samples from 75 human disease data sets and 121 samples from 11 knockout mouse data sets. In addition, we investigate the extent to which each method is biased under the null hypothesis. Together, these data and results constitute a reliable benchmark against which future pathway analysis methods could and should be tested. Conclusion Overall, the result shows that no method is perfect. In general, TB methods appear to perform better than non-TB methods. This is somewhat expected since the TB methods take into consideration the structure of the pathway which is meant to describe the underlying phenomena. We also discover that most, if not all, listed approaches are biased and can produce skewed results under the null.


Sign in / Sign up

Export Citation Format

Share Document