scholarly journals Ad26.COV2.S or BNT162b2 Boosting of BNT162b2 Vaccinated Individuals

Author(s):  
C. Sabrina Tan ◽  
Ai-ris Y. Collier ◽  
Jinyan Liu ◽  
Jingyou Yu ◽  
Huahua Wan ◽  
...  

ABSTRACTPrevious studies have reported that a third dose of the BNT162b2 (Pfizer) COVID-19 vaccine increased antibody titers and protective efficacy. Here we compare humoral and cellular immune responses in 65 individuals who were vaccinated with the BNT162b2 vaccine and were boosted after at least 6 months with either Ad26.COV2.S (Johnson & Johnson; N=41) or BNT162b2 (Pfizer; N=24).

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-Hua Li ◽  
Guo-Zhen Zhao ◽  
Long-Xin Qiu ◽  
Ai-Ling Dai ◽  
Wang-Wei Wu ◽  
...  

Haemophilus parasuiscan cause Glässer’s disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer’s disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage ofH. parasuis(LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acuteH. parasuisinfection in piglets after inactivation. Following challenging withH. parasuis,only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer’s disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4+and CD8+T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γin sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection againstH. parasuisinfection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain ofH. parasuiscould serve as a potential vaccine candidate to prevent the prevalence ofH. parasuisin Fujian province, China.


2004 ◽  
Vol 85 (8) ◽  
pp. 2407-2419 ◽  
Author(s):  
B. Mäkitalo ◽  
P. Lundholm ◽  
J. Hinkula ◽  
C. Nilsson ◽  
K. Karlén ◽  
...  

The immunogenicity and protective efficacy of a DNA and recombinant modified vaccinia Ankara (MVA) vaccine administered by two different routes were investigated. DNA expressing HIV-1 IIIB env, gag, RT, rev, tat and nef, and MVA expressing HIV-1 IIIB nef, tat and rev and simian immunodeficiency virus (SIV) macJ5 gag/pol and vaccinia HIV-1 env, were used as immunogens. Four cynomolgus macaques received DNA intramuscularly (i.m.) at month 0 and intrarectally (i.r.) and intra-orally (i.o.) at 2 months, followed by MVA i.m. at 4 months and i.r. and i.o. at 8 months. Another group of four monkeys received the same immunogens but only i.m.. Overall, stronger cellular immune responses measured by ELISPOT and T-cell proliferation assay were detected in the group primed i.m. and boosted mucosally. Following homologous intravenous simian-human immunodeficiency virus (SHIV) challenge, one of eight vaccinated animals was completely protected. This monkey, immunized i.m. and i.r.+i.o., exhibited the highest levels of HIV Env, Nef and Tat antibodies, high HIV Tat cytotoxic T-lymphocyte activity and T-lymphocyte proliferative responses to HIV Env. Four weeks post-challenge none of the monkeys immunized i.m. and i.r.+i.o., and only two out of four animals immunized i.m., demonstrated detectable plasma viral RNA levels. In contrast, all eight control animals had demonstrable plasma viral RNA levels 4 weeks post-challenge. Thus, stronger cellular immune responses and reduction of challenge virus burden were demonstrated in animals immunized i.m. as well as mucosally, compared with animals immunized i.m. only. The breadth and magnitude of the induced immune responses correlated with protective efficacy.


2021 ◽  
Author(s):  
Margherita Rosati ◽  
Mahesh Agarwal ◽  
Xintao Hu ◽  
Santhi Devasundaram ◽  
Dimitris Stellas ◽  
...  

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


2013 ◽  
Vol 20 (8) ◽  
pp. 1230-1237 ◽  
Author(s):  
Kholoud Shaban ◽  
Hanady A. Amoudy ◽  
Abu S. Mustafa

ABSTRACTBesides being the most widely used vaccine directed against tuberculosis (TB) worldwide,Mycobacterium bovisBCG is also the most controversial vaccine in current use. Its protective efficacy varies widely in different parts of the world. One approach to improving the current BCG vaccine might be to produce recombinant BCG strains that express major antigens encoded by genes that are present in theM. tuberculosis-specific region of difference 1 (RD1), such aspe35,cfp10, andesat6. In this study,pe35,cfp10, andesat6genes were cloned into shuttle plasmid pDE22 to generate the recombinant plasmids PDE22-PE35, PDE22-CFP10, and PDE22-ESAT6, which were electroporated into BCG to generate recombinant BCGs (rBCGs). The cellular immune responses (antigen-induced proliferation and secretion of selected T helper 1 [Th1], Th2, and anti-inflammatory cytokines, i.e., gamma interferon [IFN-γ], interleukin 5 [IL-5], and IL-10, respectively) that are specific to the proteins of cloned genes were studied by using spleen cells from mice immunized with native BCGs and rBCGs and synthetic peptides covering the protein sequence of the cloned genes. The results showed that the spleen cells did not secrete IL-5, whereas IL-10 was secreted in response to peptides of all three proteins from mice immunized with rBCGs only, suggesting expression of the cloned genes andin vivopriming of spleen cells to the expressed proteins. However, in Th1 cell assays that correlate with protective cellular immune responses, i.e., antigen-induced proliferation and IFN-γ secretion, only mice immunized with rBCG-pDE22-PE35 yielded positive responses to the peptides of PE35. These results suggest that rBCG-PDE22-PE35 is the only one of the three vaccines used in this work that is worthy of consideration as a new vaccine candidate against TB.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 46
Author(s):  
Shafiqul I. Chowdhury ◽  
Katrin Pannhorst ◽  
Neha Sangewar ◽  
Selvaraj Pavulraj ◽  
Xue Wen ◽  
...  

The bovine respiratory disease complex (BRDC) remains a major problem for both beef and dairy cattle industries worldwide. BRDC frequently involves an initial viral respiratory infection resulting in immunosuppression, which creates a favorable condition for fatal secondary bacterial infection. Current polyvalent modified live vaccines against bovine herpesvirus type 1(BoHV-1) and bovine viral diarrhea virus (BVDV) have limitations concerning their safety and efficacy. To address these shortcomings and safety issues, we have constructed a quadruple gene mutated BoHV-1 vaccine vector (BoHV-1 QMV), which expresses BVDV type 2, chimeric E2 and Flag-tagged Erns-fused with bovine granulocyte monocyte colony-stimulating factor (GM-CSF) designated here as QMV-BVD2*. Here we compared the safety, immunogenicity, and protective efficacy of QMV-BVD2* vaccination in calves against BVDV-2 with Zoetis Bovi-shield Gold 3 trivalent (BoHV-1, BVDV types 1 and 2) vaccine. The QMV-BVD2* prototype subunit vaccine induced the BoHV-1 and BVDV-2 neutralizing antibody responses along with BVDV-1 and -2 cross-reactive cellular immune responses. Moreover, after a virulent BVDV-2 challenge, the QMV-BVD2* prototype subunit vaccine conferred a more rapid recall BVDV-2-specific neutralizing antibody response and considerably better recall BVDV types 1 and 2-cross protective cellular immune responses than that of the Zoetis Bovi-shield Gold 3.


2021 ◽  
Author(s):  
Sonia Jangra ◽  
Jeffrey J. Landers ◽  
Raveen Rathnasinghe ◽  
Jessica J. O’Konek ◽  
Katarzyna W. Janczak ◽  
...  

AbstractSeveral promising vaccines for SARS-CoV-2 have received emergency use authorization in various countries and are being administered to the general population. However, many issues associated with the vaccines and the protection they provide remain unresolved, including the duration of conferred immunity, whether or not sterilizing immunity is imparted, and the degree of cross-variant protection that is achieved with these vaccines. Early evidence has suggested potentially reduced vaccine efficacy towards certain viral variants in circulation. Development of adjuvants compatible with these vaccine platforms that enhance the immune response and guide the adaptive and cellular immune responses towards the types of responses most effective for broad protection against SARS-CoV-2 will likely be pivotal for complete protection. Natural viral infection stimulates strong immune responses through the activation of three main pathways involving Toll-, RIG-I-, and NOD-like receptors (TLRs, RLRs, NLRs). As induction of appropriate innate responses is crucial for long-lasting adaptive immunity and for shaping the correct types of immune responses, we developed a combination, intranasal, adjuvant integrating a nanoemulsion-based adjuvant (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). This rationally designed combination adjuvant yielded a synergistic immune response with highly robust humoral and cellular responses towards SARS-CoV-2 using a recombinant spike protein S1 subunit antigen. Significantly enhanced virus neutralizing antibody titers were achieved towards both a homologous SARS-CoV-2 virus (IC50 titers of 1:104) and a mouse-adapted variant containing the N501Y mutation present in the B1.1.7 UK and B.1.351 South Africa variants. Importantly, NE/IVT DI dramatically enhanced the TH1-biased cellular response, which is expected to provide more durable and tailored cellular immunity while avoiding potential vaccine enhanced pathology previously associated with TH2-biased responses in some SARS-CoV and MERS-CoV vaccines. Our previous work with the NE/IVT DI adjuvant has demonstrated its compatibility with a broad range of antigen types. Thus, this combined adjuvant approach has strong potential for improving the induced immune profile for a variety of SARS-CoV-2 vaccine candidates such that better protection against future drift variants and prevention of transmission can be achieved.


Sign in / Sign up

Export Citation Format

Share Document