scholarly journals Microglia Mediate Early Corticostriatal Synapse Loss and Cognitive Dysfunction in Huntington’s Disease Through Complement-Dependent Mechanisms

2021 ◽  
Author(s):  
D.K. Wilton ◽  
K. Mastro ◽  
M.D. Heller ◽  
F.W. Gergits ◽  
C R. Willing ◽  
...  

AbstractHuntington’s disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here, we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from HD patients that is associated with the increased activation and localization of complement proteins, innate immune molecules, to markers of these synaptic elements. We also find that levels of these secreted innate immune molecules are elevated in the CSF of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis marking them for removal by microglia, the brain’s resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons and inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function blocking antibody or genetic ablation of a complement receptor on microglia, prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD, and also provide new preclinical data to support complement as a therapeutic target for early intervention.

2021 ◽  
pp. 1-13
Author(s):  
Karen A. Sap ◽  
Arzu Tugce Guler ◽  
Aleksandra Bury ◽  
Dick Dekkers ◽  
Jeroen A.A. Demmers ◽  
...  

Background: Huntington’s disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. Objective: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington’s disease pathology. Methods: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). Results: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. Conclusion: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington’s disease pathology.


2016 ◽  
Vol 5 (4) ◽  
pp. 343-346 ◽  
Author(s):  
Alexander P. Osmand ◽  
Terry Jo. Bichell ◽  
Aaron B. Bowman ◽  
Gillian P. Bates

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44273 ◽  
Author(s):  
Marina Kovalenko ◽  
Ella Dragileva ◽  
Jason St. Claire ◽  
Tammy Gillis ◽  
Jolene R. Guide ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Niu ◽  
Cuifang Ye ◽  
Yun Sun ◽  
Ting Peng ◽  
Shiming Yang ◽  
...  

PLoS Currents ◽  
2012 ◽  
Vol 4 ◽  
pp. e4fd085bfc9973 ◽  
Author(s):  
Christian Landles ◽  
Andreas Weiss ◽  
Sophie Franklin ◽  
David Howland ◽  
Gill Bates

2009 ◽  
Vol 106 (30) ◽  
pp. 12483-12488 ◽  
Author(s):  
F. Cicchetti ◽  
S. Saporta ◽  
R. A. Hauser ◽  
M. Parent ◽  
M. Saint-Pierre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document