scholarly journals Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity

2021 ◽  
Author(s):  
Javier C. Urcuyo ◽  
Susan Christine Massey ◽  
Andrea Hawkins-Daarud ◽  
Bianca-Maria Marin ◽  
Danielle M. Burgenske ◽  
...  

AbstractGlioblastoma is the most malignant primary brain tumor with significant heterogeneity and a limited number of effective therapeutic options. Many investigational targeted therapies have failed in clinical trials, but it remains unclear if this results from insensitivity to therapy or poor drug delivery across the blood-brain barrier. Using well-established EGFR-amplified patient-derived xenograft (PDX) cell lines, we investigated this question using an EGFR-directed therapy. With only bioluminescence imaging, we used a mathematical model to quantify the heterogeneous treatment response across the three PDX lines (GBM6, GBM12, GBM39). Our model estimated the primary cause of intracranial treatment response for each of the lines, and these findings were validated with parallel experimental efforts. This mathematical modeling approach can be used as a useful complementary tool that can be widely applied to many more PDX lines. This has the potential to further inform experimental efforts and reduce the cost and time necessary to make experimental conclusions.Author summaryGlioblastoma is a deadly brain cancer that is difficult to treat. New therapies often fail to surpass the current standard of care during clinical trials. This can be attributed to both the vast heterogeneity of the disease and the blood-brain barrier, which may or may not be disrupted in various regions of tumors. Thus, while some cancer cells may develop insensitivity in the presence of a drug due to heterogeneity, other tumor areas are simply not exposed to the drug. Being able to understand to what extent each of these is driving clinical trial results in individuals may be key to advancing novel therapies. To address this challenge, we used mathematical modeling to study the differences between three patient-derived tumors in mice. With our unique approach, we identified the reason for treatment failure in each patient tumor. These results were validated through rigorous and time-consuming experiments, but our mathematical modeling approach allows for a cheaper, quicker, and widely applicable way to come to similar conclusions.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Tang ◽  
Yicheng Feng ◽  
Sai Gao ◽  
Qingchun Mu ◽  
Chaoyong Liu

Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still highly needed to improve the therapeutic outcome of GBM treatment. The blood-brain barrier (BBB) is the main barrier that prevents therapeutic drugs from reaching the brain. Nanotechnologies that enable drug delivery across the BBB hold great promise for the treatment of GBM. This review summarizes various drug delivery systems used to treat glioma and focuses on their approaches for overcoming the BBB to enhance the accumulation of small molecules, protein and gene drugs, etc. in the brain.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2016 ◽  
Vol 15 (9) ◽  
pp. 1079-1091 ◽  
Author(s):  
Barbara Ruozi ◽  
Daniela Belletti ◽  
Francesca Pederzoli ◽  
Flavio Forni ◽  
Maria Angela Vandelli ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Rianne Haumann ◽  
Fatma El-Khouly ◽  
Marjolein Breur ◽  
Sophie Veldhuijzen van Zanten ◽  
Gertjan Kaspers ◽  
...  

Abstract INTRODUCTION Chemotherapy has been unsuccessful for pediatric diffuse midline glioma (DMG) most likely due to an intact blood-brain barrier (BBB). However, the BBB has not been characterized in DMG and therefore its implications for drug delivery are unknown. In this study we characterized the BBB in DMG patients and compared this to healthy controls. METHODS End-stage DMG pontine samples (n=5) were obtained from the VUmc diffuse intrinsic pontine glioma (DIPG) autopsy study and age-matched healthy pontine samples (n=22) were obtained from the NIH NeuroBioBank. Tissues were stained for BBB markers claudin-5, zonula occludens-1, laminin, and PDGFRβ. Claudin-5 stains were used to determine vascular density and diameter. RESULTS In DMG, expression of claudin-5 was reduced and dislocated to the abluminal side of endothelial cells. In addition, the expression of zonula occludens-1 was reduced. The basement membrane protein laminin expression was reduced at the glia limitans in both pre-existent vessels and neovascular proliferation. PDGFRβ expression was not observed in DMG but was present in healthy pons. Furthermore, the number of blood vessels in DMG was significantly (P< 0.01) reduced (13.9 ± 11.8/mm2) compared to healthy pons (26.3 ± 14.2/mm2). Markedly, the number of small blood vessels (< 10µm) was significantly lower (P< 0.01) while larger blood vessels (> 10µm) were not significantly different (P= 0.223). The mean vascular diameter was larger for DMG 9.3 ± 9.9µm compared to 7.7 ± 9.0µm for healthy pons (P= 0.016). CONCLUSION Both the BBB and the vasculature are altered at end-stage DMG. The reduced vascular density might have implications for several drug delivery methods such as focused ultrasound and convection enhanced delivery that are being explored for the treatment of DMG. The functional effects of the structurally altered BBB remain unknown and further research is needed to evaluate the BBB integrity at end-stage DMG


Neuron ◽  
2014 ◽  
Vol 81 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Robert D. Bell ◽  
Michael D. Ehlers

2016 ◽  
Vol 36 (29) ◽  
pp. 7727-7739 ◽  
Author(s):  
U. Vazana ◽  
R. Veksler ◽  
G. S. Pell ◽  
O. Prager ◽  
M. Fassler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document