scholarly journals Nanotherapeutics Overcoming the Blood-Brain Barrier for Glioblastoma Treatment

2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Tang ◽  
Yicheng Feng ◽  
Sai Gao ◽  
Qingchun Mu ◽  
Chaoyong Liu

Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still highly needed to improve the therapeutic outcome of GBM treatment. The blood-brain barrier (BBB) is the main barrier that prevents therapeutic drugs from reaching the brain. Nanotechnologies that enable drug delivery across the BBB hold great promise for the treatment of GBM. This review summarizes various drug delivery systems used to treat glioma and focuses on their approaches for overcoming the BBB to enhance the accumulation of small molecules, protein and gene drugs, etc. in the brain.

2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
S Weil ◽  
E Jung ◽  
D Domínguez Azorín ◽  
J Higgins ◽  
J Reckless ◽  
...  

Abstract BACKGROUND Glioblastomas are notoriously therapy resistant tumors. As opposed to other tumor entities, no major advances in therapeutic success have been made in the past decades. This has been calling for a deeper biological understanding of the tumor, its growth and resistance patterns. We have been using a xenograft glioma model, where human glioblastoma cells are implanted under chronic cranial windows and studied longitudinally over many weeks and months using multi photon laser scanning microscopy (MPLSM). To test the effect of (new) drugs, a stable and direct delivery system avoiding the blood-brain-barrier has come into our interest. MATERIAL AND METHODS We implanted cranial windows and fluorescently labeled human glioblastoma stem-like cells into NMRI nude mice to follow up on the tumor development in our MPLSM model. After tumor establishment, an Alzet® micropump was implanted to directly deliver agents via a catheter system continuously over 28 days directly under the cranial window onto the brain surface. Using the MPLSM technique, the continuous delivery and infusion of drugs onto the brain and into the tumor was measured over many weeks in detail using MPLSM. RESULTS The establishment of the combined methods allowed reliable concurrent drug delivery over 28 days bypassing the blood-brain-barrier. Individual regions and tumor cells could be measured and followed up before, and after the beginning of the treatment, as well as after the end of the pump activity. Fluorescently labelled drugs were detectable in the MPLSM and its distribution into the brain parenchyma could be quantified. After the end of the micropump activity, further MPLSM measurements offer the possibility to observe long term effects of the applied drug on the tumor. CONCLUSION The combination of tumor observation in the MPSLM and concurrent continuous drug delivery is a feasible and reliable method for the investigation of (novel) anti-tumor agents, especially drugs that are not blood-brain-barrier penetrant. Morphological or even functional changes of individual tumor cells can be measured under and after treatment. These techniques can be used to test new drugs targeting the tumor, its tumor microtubes and tumor cells networks, and measure the effects longitudinally.


2021 ◽  
Vol 27 ◽  
Author(s):  
Dhara Lakdawala ◽  
Md Abdur Rashid ◽  
Farhan Jalees Ahmad

: Drug delivery to the brain has remained a significant challenge in treating neurodegenerative disorders such as Alzheimer's disease due to the presence of the blood-brain barrier, which primarily obstructs the access of drugs and biomolecules into the brain. Several methods to overcome the blood-brain barrier have been employed, such as chemical disruption, surgical intervention, focused ultrasound, intranasal delivery and using nanocarriers. Nanocarrier systems remain the method of choice and have shown promising results over the past decade to achieve better drug targeting. Polymeric nanocarriers and lipidic nanoparticles act as a carrier system providing better encapsulation of drugs, site-specific delivery, increased bioavailability and sustained release of drugs. The surface modifications and functionalization of these nanocarrier systems have greatly facilitated targeted drug delivery. The safety and efficacy of these nanocarrier systems have been ascertained by several in vitro and in vivo models. In the present review, we have elaborated on recent developments of nanoparticles as a drug delivery system for Alzheimer's disease, explicitly focusing on polymeric and lipidic nanoparticles.


2021 ◽  
Author(s):  
Javier C. Urcuyo ◽  
Susan Christine Massey ◽  
Andrea Hawkins-Daarud ◽  
Bianca-Maria Marin ◽  
Danielle M. Burgenske ◽  
...  

AbstractGlioblastoma is the most malignant primary brain tumor with significant heterogeneity and a limited number of effective therapeutic options. Many investigational targeted therapies have failed in clinical trials, but it remains unclear if this results from insensitivity to therapy or poor drug delivery across the blood-brain barrier. Using well-established EGFR-amplified patient-derived xenograft (PDX) cell lines, we investigated this question using an EGFR-directed therapy. With only bioluminescence imaging, we used a mathematical model to quantify the heterogeneous treatment response across the three PDX lines (GBM6, GBM12, GBM39). Our model estimated the primary cause of intracranial treatment response for each of the lines, and these findings were validated with parallel experimental efforts. This mathematical modeling approach can be used as a useful complementary tool that can be widely applied to many more PDX lines. This has the potential to further inform experimental efforts and reduce the cost and time necessary to make experimental conclusions.Author summaryGlioblastoma is a deadly brain cancer that is difficult to treat. New therapies often fail to surpass the current standard of care during clinical trials. This can be attributed to both the vast heterogeneity of the disease and the blood-brain barrier, which may or may not be disrupted in various regions of tumors. Thus, while some cancer cells may develop insensitivity in the presence of a drug due to heterogeneity, other tumor areas are simply not exposed to the drug. Being able to understand to what extent each of these is driving clinical trial results in individuals may be key to advancing novel therapies. To address this challenge, we used mathematical modeling to study the differences between three patient-derived tumors in mice. With our unique approach, we identified the reason for treatment failure in each patient tumor. These results were validated through rigorous and time-consuming experiments, but our mathematical modeling approach allows for a cheaper, quicker, and widely applicable way to come to similar conclusions.


2016 ◽  
Vol 45 (17) ◽  
pp. 4690-4707 ◽  
Author(s):  
Benjamí Oller-Salvia ◽  
Macarena Sánchez-Navarro ◽  
Ernest Giralt ◽  
Meritxell Teixidó

Blood–brain barrier shuttle peptides are increasingly more potent and versatile tools to enhance drug delivery to the brain.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61694 ◽  
Author(s):  
Benjamin S. Bleier ◽  
Richie E. Kohman ◽  
Rachel E. Feldman ◽  
Shreshtha Ramanlal ◽  
Xue Han

2013 ◽  
Vol 33 (12) ◽  
pp. 1944-1954 ◽  
Author(s):  
Ngoc H On ◽  
Sanjot Savant ◽  
Myron Toews ◽  
Donald W Miller

The present study characterizes the effects of lysophosphatidic acid (LPA) on blood–brain barrier (BBB) permeability focusing specifically on the time of onset, duration, and magnitude of LPA-induced changes in cerebrovascular permeability in the mouse using both magnetic resonance imaging (MRI) and near infrared fluorescence imaging (NIFR). Furthermore, potential application of LPA for enhanced drug delivery to the brain was also examined by measuring the brain accumulation of radiolabeled methotrexate. Exposure of primary cultured brain microvessel endothelial cells (BMECs) to LPA produced concentration-dependent increases in permeability that were completely abolished by clostridium toxin B. Administration of LPA disrupted BBB integrity and enhanced the permeability of small molecular weight marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRdye800cwPEG, and the P-glycoprotein efflux transporter probe, Rhodamine 800 (R800). The increase in BBB permeability occurred within 3 minutes after LPA injection and barrier integrity was restored within 20 minutes. A decreased response to LPA on large macromolecule BBB permeability was observed after repeated administration. The administration of LPA also resulted in 20-fold enhancement of radiolabeled methotrexate in the brain. These studies indicate that administration of LPA in combination with therapeutic agents may increase drug delivery to the brain.


Sign in / Sign up

Export Citation Format

Share Document