scholarly journals A direct high-throughput protein quantification strategy facilitates discovery and characterization of a celastrol-derived BRD4 degrader

2021 ◽  
Author(s):  
Neil Connor Payne ◽  
Semer Maksoud ◽  
Bakhos Tannous ◽  
Ralph Mazitschek

We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras; PROTACs), capable of both accurately quantifying protein levels in whole cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small molecule inhibitors and PROTACs in high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation

2021 ◽  
pp. 247255522110262
Author(s):  
Jonathan Choy ◽  
Yanqing Kan ◽  
Steve Cifelli ◽  
Josephine Johnson ◽  
Michelle Chen ◽  
...  

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


2018 ◽  
Vol 23 (9) ◽  
pp. 974-981
Author(s):  
Yu-Chi Juang ◽  
Xavier Fradera ◽  
Yongxin Han ◽  
Anthony William Partridge

Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z′ score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure–activity relationships.


2006 ◽  
Vol 11 (6) ◽  
pp. 606-616 ◽  
Author(s):  
Oliver Von Ahsen ◽  
Anne Schmidt ◽  
Monika Klotz ◽  
Karsten Parczyk

High-throughput screening (HTS) of large chemical libraries has become the main source of new lead compounds for drug development. Several specialized detection technologies have been developed to facilitate the cost- and time-efficient screening of millions of compounds. However, concerns have been raised, claiming that different HTS technologies may produce different hits, thus limiting trust in the reliability of HTS data. This study was aimed to investigate the reliability of the authors most frequently used assay techniques: scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET). To investigate the data concordance between these 2 detection technologies, the authors screened a large subset of the Schering compound library consisting of 300,000 compounds for inhibitors of a nonreceptor tyrosine kinase. They chose to set up this study in realistic HTS scale to ensure statistical significance of the results. The findings clearly demonstrate that the choice of detection technology has no significant impact on hit finding, provided that assays are biochemically equivalent. Data concordance is up to 90%. The little differences in hit findings are caused by threshold setting but not by systematic differences between the technologies. The most significant difference between the compared techniques is that in the SPA format, more false-positive primary hits were obtained.


2010 ◽  
Vol 15 (10) ◽  
pp. 1281-1286 ◽  
Author(s):  
Imanol Peña ◽  
Juan Manuel Domínguez

The use of thermally denatured bovine serum albumin (tdBSA) as an additive in high-throughput screening (HTS) buffers has been studied with the aim of finding a surrogate to native albumin devoid of its inconveniences, in particular its compound masking effect. The presence of aggregates in the thermally denatured material did not have any negative impact on common readout technologies used in HTS such as fluorescence intensity (FLINT), fluorescence polarization, time-resolved fluorescence resonance energy transfer (TR-FRET) and luminescence. tdBSA rendered the same beneficial effects as native albumin in several assays or even improved its performance due to the lack of specific binding properties. Although tdBSA still binds compounds nonspecifically as any other protein does, it mitigates the compound masking effect observed with native albumin and can be postulated as a convenient surrogate to BSA for HTS purposes.


2001 ◽  
Vol 6 (4) ◽  
pp. 255-264 ◽  
Author(s):  
Benjamin Bader ◽  
Elke Butt ◽  
Alois Palmetshofer ◽  
Ulrich Walter ◽  
Thomas Jarchau ◽  
...  

Activation of cyclic GMP-dependent protein kinase (cGK) is an important event in the regulation of blood pressure and platelet function. Upstream signals are the generation of nitric oxide (NO) by NO syntheses and the subsequent rise in cyclic GMP levels mediated by NO-dependent guanylyl cyclases (GCs). The identification of new cGK activators by high throughput sreening (HTS) may lead to the development of a novel class of therapeutics for the treatment of cardiovascular diseases. Therefore, a homogeneous, nonradioactive assay for cGK activity was developed using a biotinylated peptide derived from vasodilator-stimulated phosphoprotein (VASP), a well-characterized natural cGK substrate. The phosphorylated peptide could be detected by a VASP-specific monoclonal phosphoserine antibody and a fluorescent detection system consisting of a europium-labeled secondary antibody and allophycocyanin (APC)-labeled streptavidin. Fluorescence resonance energy transfer (FRET) from europium to APC was detected in a time-resolved fashion (TR-FRET). Activation and inhibition constants for known substances determined by this new fluorescence-based assay correlated well with published results obtained by conventional radioactive cGK activity assays. The assay proved to be sensitive, robust, highly specific for cGK, and suitable for HTS in 96- and 384-well formats. This assay is applicable to purified enzymes as well as to complex samples such as human platelet extracts.


2011 ◽  
Vol 16 (10) ◽  
pp. 1236-1246 ◽  
Author(s):  
Thomas Machleidt ◽  
Matthew B. Robers ◽  
Spencer B. Hermanson ◽  
Jeanne M. Dudek ◽  
Kun Bi

Posttranslational modifications such as phosphorylation, acetylation, and methylation play important roles in regulating the structures and functions of histones, which in turn regulate gene expression and DNA repair and replication. Histone-modifying enzymes, such as deacetylases, methyltransferases and demethylases, have been pursued as therapeutic targets for various diseases. However, detection of the activities of these enzymes in high-throughput cell-based formats has remained challenging. The authors have developed high-throughput LanthaScreen cellular assays for Histone H3 site-specific modifications. These assays use cells expressing green fluorescence protein–tagged Histone H3 transiently delivered via BacMam and terbium-labeled anti–Histone H3 modification-specific antibodies. Robust time-resolved Förster resonance energy transfer signals were detected for H3 lysine-9 acetylation and dimethylation (H3K9me2), serine-10 phosphorylation, K4 di- and trimethylation, and K27 trimethylation. Consistent with previous reports, hypoxic stress increased K4 methylation levels, and methyltransferase G9a inhibitor UNC-0638 decreased K9me2 levels significantly, with little effects on other modifications. To demonstrate the utility of this assay platform in screening, the K9 acetylation assay was used to profile the Enzo Epigenetics Library. Twelve known HDAC inhibitors were identified as hits and followed up in a dose–response format. In conclusion, this assay platform enables high-throughput cell-based analysis of diverse types of posttranslational modifications of Histone H3.


2009 ◽  
Vol 14 (8) ◽  
pp. 924-935 ◽  
Author(s):  
Connie S. Lebakken ◽  
Steven M. Riddle ◽  
Upinder Singh ◽  
W. Jack Frazee ◽  
Hildegard C. Eliason ◽  
...  

The expansion of kinase assay technologies over the past decade has mirrored the growing interest in kinases as drug targets. As a result, there is no shortage of convenient, fluorescence-based methods available to assay targets that span the kinome. The authors recently reported on the development of a non-activity-based assay to characterize kinase inhibitors that depended on displacement of an Alexa Fluor® 647 conjugate of staurosporine (a “tracer”) from a particular kinase. Kinase inhibitors were characterized by a change in fluorescence lifetime of the tracer when it was bound to a kinase relative to when it was displaced by an inhibitor. Here, the authors report on improvements to this strategy by reconfiguring the assay in a time-resolved fluorescence resonance energy transfer (TR-FRET) format that simplifies instrumentation requirements and allows for the use of a substantially lower concentration of kinase than was required in the fluorescence-lifetime-based format. The authors use this new assay to demonstrate several aspects of the binding assay format that are advantageous relative to traditional activity-based assays. The TR-FRET binding format facilitates the assay of compounds against low-activity kinases, allows for the characterization of type II kinase inhibitors either using nonactivated kinases or by monitoring compound potency over time, and ensures that the signal being detected is specific to the kinase of interest and not a contaminating kinase.


2016 ◽  
Vol 22 (4) ◽  
pp. 338-347 ◽  
Author(s):  
Danqing Xu ◽  
Zhiheng Xu ◽  
Li Han ◽  
Cheng Liu ◽  
Zheng Zhou ◽  
...  

Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document