scholarly journals N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase

2021 ◽  
Author(s):  
Jana Rosenau ◽  
Isabell Louise Grothaus ◽  
Yikun Yang ◽  
Lucio Colombi Ciacchi ◽  
Soerge Kelm ◽  
...  

Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS are highly N-glycosylated, but the biological functions of the glycans remain elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structure stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. MALDI-TOF MS revealed that eight asparagine sites were glycosylated with high-mannose type N-glycans. Deglycosylation of TconTS1 led to a 5-fold decrease in substrate affinity but to the same conversion rate relative to the untreated enzyme. After deglycosylation, no changes in secondary structure elements were observed in circular dichroism experiments. Molecular dynamics simulations revealed interactions between the highly flexible N-glycans and some conserved amino acids belonging to the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and promoting enzyme/substrate complex stability. The here-observed modulation of catalytic activity via the N-glycan shield may be a structure-function relationship intrinsic of several members of the TS family.

2015 ◽  
Vol 8 (12) ◽  
pp. 3823-3835 ◽  
Author(s):  
J. Y. Tang

Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steady state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration [S]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k2+ and ∂ ln v / ∂ ln [E]T, and persistently overpredicts ∂ ln v / ∂ ln k1+ and ∂ ln v / ∂ ln [S]T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k2+, ∂ ln v / ∂ ln k1+, ∂ ln v / ∂ ln [E]T, and ∂ ln v / ∂ ln [S]T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.


2020 ◽  
Author(s):  
Piia Kokkonen ◽  
Andy Beier ◽  
Stanislav Mazurenko ◽  
Jiri Damborsky ◽  
David Bednar ◽  
...  

<div> <p>Substrate inhibition is the most common deviation from Michaelis-Menten kinetics, occurring in approximately 25% of known enzymes. It is generally attributed to the formation of an unproductive enzyme-substrate complex after the simultaneous binding of two or more substrate molecules to the active site. Here, we show that a single point mutation (L177W) in the haloalkane dehalogenase LinB causes strong substrate inhibition. Surprisingly, a global kinetic analysis suggested that this inhibition is caused by binding of the substrate to the enzyme-product complex. Molecular dynamics simulations clarified the details of this unusual mechanism of substrate inhibition: Markov state models indicated that the substrate prevents the exit of the halide product by direct blockage and/or restricting conformational flexibility. The contributions of three residues forming the possible substrate inhibition site (W140A, F143L and I211L) to the observed inhibition were studied by mutagenesis. An unusual synergy giving rise to high catalytic efficiency and reduced substrate inhibition was observed between residues L177W and I211L, which are located in different access tunnels of the protein. These results show that substrate inhibition can be caused by substrate binding to the enzyme-product complex and can be controlled rationally by targeted amino acid substitutions in enzyme access tunnels. </p> </div> <br>


1999 ◽  
Vol 341 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Satoru NIRASAWA ◽  
Yoshiaki NAKAJIMA ◽  
Zhen-Zhong ZHANG ◽  
Michiteru YOSHIDA ◽  
Kiyoshi HAYASHI

An aminopeptidase from Aeromonas caviae T-64 was translated as a preproprotein consisting of three domains; a signal peptide (19 amino acid residues), an N-terminal propeptide (101 residues) and a mature region (273 residues). We demonstrated that a proteinase, which was isolated from the culture filtrate of A. caviae T-64, activated the recombinant pro-aminopeptidase by removal of the majority of the propeptide. Using L-Leu-p-nitroanilide as a substrate, the processed aminopeptidase showed a large increase in kcat when compared with the unprocessed enzyme, whereas the Km value remained relatively unchanged. The similar Km values for the pro-aminopeptidase and the mature aminopeptidase indicated that the N-terminal propeptide of the pro-aminopeptidase did not influence the formation of the enzyme-substrate complex, suggesting the absence of marked conformational changes in the active domain. In contrast, the marked difference in kcat suggests a significant decrease in the energy of one or more of the transition states of the enzyme-substrate reaction coordinate. Moreover, we showed that the activity of the urea-denatured pro-aminopeptidase could be recovered by dialysis, whereas the activity of the urea-denatured mature aminopeptidase, which lacked the propeptide, could not. Further to this, the propeptide-deleted aminopeptidase formed an inclusion body in the cytoplasmic space in Escherichia coli and was not secreted at all. These results suggested that the propeptide of the pro-aminopeptidase acted as an intramolecular chaperone that was involved with the correct folding of the enzyme in vitro and was required for extracellular secretion in E. coli.


Acta Naturae ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 52-65 ◽  
Author(s):  
V. V. Koval ◽  
D. G. Knorre ◽  
O. S. Fedorova

The purpose of the present review is to summarize the data related with the structural features of interaction between the human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) and DNA. The review covers the questions concerning the role of individual amino acids of hOGG1 in the specific recognition of the oxidized DNA bases, formation of the enzyme-substrate complex, and excision of the lesion bases from DNA. Attention is also focused upon conformational changes in the enzyme active site and disruption of enzyme activity as a result of amino acid mutations. The mechanism of damaged bases release from DNA induced by hOGG1 is discussed in the context of structural dynamics.


2020 ◽  
Author(s):  
Piia Kokkonen ◽  
Andy Beier ◽  
Stanislav Mazurenko ◽  
Jiri Damborsky ◽  
David Bednar ◽  
...  

<div> <p>Substrate inhibition is the most common deviation from Michaelis-Menten kinetics, occurring in approximately 25% of known enzymes. It is generally attributed to the formation of an unproductive enzyme-substrate complex after the simultaneous binding of two or more substrate molecules to the active site. Here, we show that a single point mutation (L177W) in the haloalkane dehalogenase LinB causes strong substrate inhibition. Surprisingly, a global kinetic analysis suggested that this inhibition is caused by binding of the substrate to the enzyme-product complex. Molecular dynamics simulations clarified the details of this unusual mechanism of substrate inhibition: Markov state models indicated that the substrate prevents the exit of the halide product by direct blockage and/or restricting conformational flexibility. The contributions of three residues forming the possible substrate inhibition site (W140A, F143L and I211L) to the observed inhibition were studied by mutagenesis. An unusual synergy giving rise to high catalytic efficiency and reduced substrate inhibition was observed between residues L177W and I211L, which are located in different access tunnels of the protein. These results show that substrate inhibition can be caused by substrate binding to the enzyme-product complex and can be controlled rationally by targeted amino acid substitutions in enzyme access tunnels. </p> </div> <br>


2015 ◽  
Vol 8 (9) ◽  
pp. 7663-7691 ◽  
Author(s):  
J. Y. Tang

Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ∂ ln v / ∂ ln k2+ and ∂ ln v / ∂ ln [ E ]T, and persistently over-predicts ∂ ln v / ∂ ln k1+ and ∂ ln v / ∂ ln [ S ]T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k2+, ∂ ln v / ∂ ln k1+, ∂ ln v / ∂ ln [ E ]T and ∂ ln v / ∂ ln [ S ]T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.


2015 ◽  
Vol 112 (45) ◽  
pp. 13904-13909 ◽  
Author(s):  
Qing Guo ◽  
Yufan He ◽  
H. Peter Lu

Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions.


Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


2019 ◽  
Vol 26 (10) ◽  
pp. 743-750 ◽  
Author(s):  
Remya Radha ◽  
Sathyanarayana N. Gummadi

Background:pH is one of the decisive macromolecular properties of proteins that significantly affects enzyme structure, stability and reaction rate. Change in pH may protonate or deprotonate the side group of aminoacid residues in the protein, thereby resulting in changes in chemical and structural features. Hence studies on the kinetics of enzyme deactivation by pH are important for assessing the bio-functionality of industrial enzymes. L-asparaginase is one such important enzyme that has potent applications in cancer therapy and food industry.Objective:The objective of the study is to understand and analyze the influence of pH on deactivation and stability of Vibrio cholerae L-asparaginase.Methods:Kinetic studies were conducted to analyze the effect of pH on stability and deactivation of Vibrio cholerae L-asparaginase. Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) studies have been carried out to understand the pH-dependent conformational changes in the secondary structure of V. cholerae L-asparaginase.Results:The enzyme was found to be least stable at extreme acidic conditions (pH< 4.5) and exhibited a gradual increase in melting temperature from 40 to 81 °C within pH range of 4.0 to 7.0. Thermodynamic properties of protein were estimated and at pH 7.0 the protein exhibited ΔG37of 26.31 kcal mole-1, ΔH of 204.27 kcal mole-1 and ΔS of 574.06 cal mole-1 K-1.Conclusion:The stability and thermodynamic analysis revealed that V. cholerae L-asparaginase was highly stable over a wide range of pH, with the highest stability in the pH range of 5.0–7.0.


Sign in / Sign up

Export Citation Format

Share Document